K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
22 tháng 5 2023

Lời giải:

Để pt có 2 nghiệm $x_1,x_2$ thì: $\Delta=k^2-8\geq 0$

$\Leftrightarrow k^2\geq 8(1)$

Áp dụng định lý Viet: 

$x_1+x_2=-k$

$x_1x_2=2$
Khi đó:
$(\frac{x_1}{x_2})^2+(\frac{x_2}{x_1})^2> 23$

$\Leftrightarrow \frac{x_1^4+x_2^4}{(x_1x_2)^2}>23$
$\Leftrightarrow x_1^4+x_2^4> 23(x_1x_2)^2=23.2^2=92$

$\Leftrightarrow (x_1^2+x_2^2)^2-2(x_1x_2)^2> 92$
$\Leftrightarrow (x_1^2+x_2^2)^2-8> 92$

$\Leftrightarrow [(x_1+x_2)^2-2x_1x_2]^2>100$

$\Leftrightarrow (k^2-4)^2>100$

$\Leftrightarrow k^2-4>10$ hoặc $k^2-4<-10$

$\Leftrightarrow k^2>14$ hoặc $k^2<-6$ (loại) 

$\Leftrightarrow k> \sqrt{14}$ hoặc $k< -\sqrt{14}$

Kết hợp với $k^2\geq 8$ suy ra $k> \sqrt{14}$ hoặc $k< -\sqrt{14}$

1 tháng 12 2018

Đề sai !!!

Đề : x1 < x2

Mà lại có x1 - x2 = 6 ???

18 tháng 2 2018

a) thay m=1 vvào rồi giải như giải ptrinh bậc hai bình thường

b)chứng minh phương trrình (1) luôn có hai nghiệm phân biệt(tìm đenta, nếu đenta lớn hơn 0 thì pt có 2 nghiệm phân biệt)

Dựa vào hệ thức viet để giải một pt của hệ (thường thì là pt cộng)với pt đã cho ở đầu bài

thay lần lượt từng kết quả vào để tìm m

c)mk vẫn còn chưa thành thạo dạng này lắm nên chưa biết làm.

7 tháng 6 2015

a) \(\Delta=4m^2-4\left(3m-4\right)=4m^2-12m+16=\left(2m-3\right)^2+7>0\)với mọi m=> pt (1) có nghiệm phân biệt với mọi m

b)áp dụng đ.lí Viét ta có: \(x_1+x_2=2m\)\(x_1.x_2=m^2+3m-4\)

\(x_1^2+x_2^2=\left(x1+x2\right)^2-2x1.x2=4m^2-2\left(m^2+3m-4\right)=4m^2-2m^2-6m+8\)

    \(=2\left(m^2+3m-4\right)=2\left[\left(m+\frac{3}{2}\right)^2-4-\frac{9}{4}\right]=2\left[\left(m+\frac{3}{2}\right)^2-\frac{25}{4}\right]\)

A đặt giá trị nhỏ nhất khi m = -3/2

2 tháng 7 2020

ms học lớp 5 nên giải câu a )

\(-x^2+\left(2m-2\right)x-m^2+3m-3=0\)

thay \(m=2\)vào PT(1)

ta có \(-x^2+\left(2.2-2\right)x-2^2+3.2-3=0\)

   \(\Leftrightarrow-x^2+2x-4+6-3=0\)

\(\Leftrightarrow-x^2+2x-4+3=0\)

\(\Leftrightarrow-x^2+2x-4=-3\)

\(\Leftrightarrow-x^2+2x=1\)

....

7 tháng 5 2019

Để phương trình có 2 nghiệm thì: \(\Delta^'\ge0\)

Hay:\(2^2-\left(2m-5\right)\ge0\)

\(\Leftrightarrow4-2m+5\ge0\)

\(\Leftrightarrow-2m\ge-9\)

\(\Leftrightarrow m\le\frac{9}{2}\)

Theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=-4\\x_1x_2=2m-5\end{cases}}\)

Ta có: \(x_1^2+x_2^2-x_1x_2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2=20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=20\)

\(\Leftrightarrow\left(-4\right)^2-3\left(2m-5\right)=20\)

\(\Leftrightarrow16-6m+15=20\)

\(\Leftrightarrow-6m=-11\)

\(\Leftrightarrow m=\frac{11}{6}\)(tm)

=.= hk tốt!!

Thanks you very much