K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2022

a) thay m= -2 vào pt , ta có :
→x+( -2-1)x+5.(-2)-6=0
↔x2-3x-16=0
Δ=(-3)2-4.1.(-16)
Δ=9+64
Δ=73 > 0
vì delta > 0 nên ta có 2 nghiệm phân biệt
x1=\(\dfrac{3+\sqrt{73}}{2.1}\)=\(\dfrac{3+\sqrt{73}}{2}\)
x2=\(\dfrac{3-\sqrt{73}}{2}\)
b)Hệ thức vi et :
x1+x2=\(\dfrac{-b}{a}=\dfrac{-\left(m-1\right)}{1}=-m+1\)(1)
x1.x2=\(\dfrac{c}{a}=\dfrac{5m-6}{1}=5m-6\)(2)
Ta có : 4x1+3x2=1(3)
Từ (1) và (3) , ta có hệ pt 
\(\left\{{}\begin{matrix}x1+x2=-m+1 \\4x1+3x2=1\end{matrix}\right. \)
\(\left\{{}\begin{matrix}3x_1+3x_2=-3m+3\\4x_1+3x_2=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_1+x_2=-m+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x_1=3m-2\\x_2=-4m+3\end{matrix}\right.\)
Ta thay x1 x2 vào (2) , ta có :
➝(3m-2).(-4m+3)=5m-6
↔-12m2+12m=0
↔12m(-m+1)=0
-> 12m=0 -> m=0
-> -m+1=0 ->m=1 
Vậy m = 0 và m =1 thì sẽ tm hệ thức

14 tháng 4 2022

â) thay m = 6 và phương trình ta đc

\(x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right).\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.=>\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

NV
14 tháng 4 2022

b.

Phương trình có 2 nghiệm khi: \(\Delta=25-4m\ge0\Rightarrow m\le\dfrac{25}{4}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m\end{matrix}\right.\)

Pt có 2 nghiệm dương khi \(m>0\)

\(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)

\(\Leftrightarrow x_1^2x_2+x_2^2x_1+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow x_1x_2\left(x_1+x_2\right)+2x_1x_2\sqrt{x_1x_2}=36\)

\(\Leftrightarrow5m+2m\sqrt{m}=36\)

Đặt \(\sqrt{m}=t>0\Rightarrow2t^3+5t^2-36=0\)

\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)

\(\Leftrightarrow t=2\Rightarrow\sqrt{m}=2\)

\(\Rightarrow m=4\)

26 tháng 1 2022

a, Thay m = -2 ta được : 

x^2 + 6x + 3 = 0 

\(\Leftrightarrow x=-3+\sqrt{6};x=-3-\sqrt{6}\)

b, Để pt có 2 nghiệm 

\(\Delta'=\left(m-1\right)^2-\left(-m+1\right)=m^2-2m+1+m-1=m^2-m\)> 0 

Theo Viet : \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

Ta có : \(\left(x_1+x_2\right)^2+5x_1x_2=9\)

\(\Leftrightarrow4\left(m-1\right)^2+5\left(-m+1\right)=9\)

\(\Leftrightarrow4m^2-8m+4-5m+5=9\Leftrightarrow4m^2-13m=0\)

\(\Leftrightarrow m\left(4m-13\right)=0\Leftrightarrow m=0\left(ktm\right);m=\dfrac{13}{4}\)(tm) 

26 tháng 1 2022

a, Thay  m=-2 vào pt ta có:
\(x^2-2\left(m-1\right)x-m+1=0\\ \Leftrightarrow x^2-2\left(-2-1\right)x-\left(-2\right)+1=0\\ \Leftrightarrow x^2+6x+3=0\\ \Leftrightarrow\left(x^2+6x+9\right)-6=0\\ \Leftrightarrow\left(x+3\right)^2-\sqrt{6^2}=0\\ \Leftrightarrow\left(x+3-\sqrt{6}\right)\left(x+3+\sqrt{6}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-3+\sqrt{6}\\x=-3-\sqrt{6}\end{matrix}\right.\)

 \(b,\Delta'=\left[-\left(m-1\right)\right]^2-\left(-m+1\right)\\ =m^2-2m+1+m-1\\ =m^2-m\)

Để pt có 2 nghiệm thì \(\) \(\Delta'\ge0\Leftrightarrow m^2-m\ge0\Leftrightarrow\left[{}\begin{matrix}m\ge1\\m\le0\end{matrix}\right.\)

Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=-m+1\end{matrix}\right.\)

\(x_1^2+x_2^2+7x_1x_2=9\\ \Leftrightarrow\left(x_1+x_2\right)^2+5x_1x_2=9\\ \Leftrightarrow\left(2m-2\right)^2+5\left(-m+1\right)=9\\ \Leftrightarrow4m^2-8m+4-5m+5-9=0\\ \Leftrightarrow4m^2-13m=0\\ \Leftrightarrow m\left(4m-13\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=\dfrac{13}{4}\left(tm\right)\end{matrix}\right.\)

25 tháng 5 2022

ráng nhìn ha

undefined

undefined

25 tháng 5 2022

ui chữ cj đẹp ghê

12 tháng 2 2023

a) (*) m = 0 => x = \(\dfrac{7}{8}\) (loại)

(*) \(m\ne0\) Phương trình có nghiệm

\(\Delta=\left[2\left(m-4\right)\right]^2-4m\left(m+7\right)=-60m+64\ge0\Leftrightarrow m\le\dfrac{16}{15}\) 

Hệ thức Viet kết hợp 4x1 + 3x2 = 1

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1+x_2=\dfrac{8-2m}{m}\\x_1=2x_2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2=\dfrac{m+7}{m}\\x_1=\dfrac{16-4m}{3m}\\x_2=\dfrac{8-2m}{3m}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{16-4m}{3m}.\dfrac{8-2m}{3m}=\dfrac{m+7}{m}\)

\(\Leftrightarrow2\left(8-2m\right)^2=9m\left(m+7\right)\)

\(\Leftrightarrow8m^2-64m+128=9m^2+63m\)

\(\Leftrightarrow m^2+127m-128=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=128\left(\text{loại}\right)\end{matrix}\right.\)<=> m = 1

 

 

a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)

\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)

Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)

\(\Leftrightarrow-8m>-28\)

hay \(m< \dfrac{7}{2}\)

Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2

nên Áp dụng hệ thức Viet, ta có: 

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì 

\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)

Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau

a) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-m\right)\)

\(=\left(2m-2\right)^2+4m\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4m^2-4m+1+3\)

\(=\left(2m-1\right)^2+3>0\forall x\)

Do đó: Phương trình luôn có hai nghiệm x1,x2 với mọi m(Đpcm)

b) Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1\cdot x_2=-m\end{matrix}\right.\)

Ta có: \(y_1+y_2=x_1+\dfrac{1}{x_2}+x_2+\dfrac{1}{x_1}\)

\(=\left(x_1+x_2\right)+\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)\)

\(=\left(2m-2\right)+\dfrac{2m-2}{-m}\)

\(=2m-2-\dfrac{2m-2}{m}\)

\(=\dfrac{2m^2-2m-2m+2}{m}\)

\(=\dfrac{2m^2-4m+2}{m}\)

\(=\dfrac{2\left(m^2-2m+1\right)}{m}\)

\(=\dfrac{2\left(m-1\right)^2}{m}\)

Ta có: \(y_1y_2=\left(x_1+\dfrac{1}{x_2}\right)\left(x_2+\dfrac{1}{x_1}\right)\)

\(=x_1x_2+2+\dfrac{1}{x_1x_2}\)

\(=-m+2+\dfrac{1}{-m}\)

\(=-m+2-\dfrac{1}{m}\)

\(=\dfrac{-m^2}{m}+\dfrac{2m}{m}-\dfrac{1}{m}\)

\(=\dfrac{-m^2+2m-1}{m}\)

\(=\dfrac{-\left(m-1\right)^2}{m}\)

Phương trình đó sẽ là:

\(x^2-\dfrac{2\left(m-1\right)^2}{m}x-\dfrac{\left(m-1\right)^2}{m}=0\)

a: Khi m=2 thì pt sẽ là \(x^2-8x-9=0\)

=>x=9 hoặc x=-1

b: \(\text{Δ}=\left(2m+4\right)^2-4\left(-2m-5\right)\)

\(=4m^2+16m+16+8m+20=4m^2+24m+36\)

\(=4\left(m^2+6m+9\right)=4\left(m+3\right)^2>=0\)

Để phương trình có hai nghiệm phân biệt thì m+3<>0

hay m<>-3

Theo đề, ta có: \(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\sqrt{\left(2m+4\right)^2-4\left(-2m-5\right)}=2\)

\(\Leftrightarrow\sqrt{4m^2+16m+16+8m+20}=2\)

\(\Leftrightarrow4m^2+24m+36=4\)

\(\Leftrightarrow m^2+6m+9=1\)

=>m+3=1 hoặc m+3=-1

=>m=-2 hoặc m=-4