Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để pt có hai nghiệm pb:
\(\Leftrightarrow\)\(\Delta=16-4\left(m-4\right)>0\)\(\Leftrightarrow8>m\)
Có\(\left(x_1-1\right)\left(x_2^2-3x_2+m-3\right)=-2\)
\(\Leftrightarrow\left(x_1-1\right)\left(x^2_2-4x_2+m-4\right)+\left(x_1-1\right)\left(x_2+1\right)=-2\)
\(\Leftrightarrow x_1x_2+x_1-x_2-1=-2\) (*) (vì x2 là một nghiệm của pt nên \(x_2^2-4x_2+m-4=0\))
TH1: \(x_1>x_2\)
(*)\(\Leftrightarrow x_1x_2+\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1=0\)
\(\Leftrightarrow m-4+\sqrt{4^2-4\left(m-4\right)}+1=0\)
\(\Leftrightarrow\sqrt{32-4m}=3-m\) \(\Leftrightarrow\left\{{}\begin{matrix}32-4m=9-6m+m^2\\m\le3\end{matrix}\right.\) \(\Leftrightarrow m=1-2\sqrt{6}\)
TH2:\(x_1< x_2\)
(*)\(\Leftrightarrow\)\(x_1x_2-\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}+1=0\)
\(\Leftrightarrow m-4+1=\sqrt{32-4m}\) \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ge0\\\left(m-3\right)^2=32-4m\end{matrix}\right.\)\(\Leftrightarrow m=1+2\sqrt{6}\) (tm đk m<8)
Vậy \(\left[{}\begin{matrix}m=1-2\sqrt{6}\\m=1+2\sqrt{6}\end{matrix}\right.\)
giải thích cho mình vì sao biến đổi đc từ
m−4+√42−4(m−4)+1 thành √32−4m
a) Với m= 2, ta có phương trình: x 2 + 2 x − 3 = 0
Ta có: a + b + c = 1 + 2 − 3 = 0
Theo định lý Viet, phương trình có 2 nghiệm:
x 1 = 1 ; x 2 = − 3 ⇒ S = 1 ; − 3 .
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
Ta có: Δ ' = m − 1 2 − 1 + 2 m = m 2 ≥ 0 ; ∀ m
Vậy phương trình luôn có nghiệm ∀ m .
c) Theo định lý Viet, ta có: x 1 + x 2 = − 2 m + 2 x 1 . x 2 = 1 − 2 m
Ta có:
x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 ⇔ x 1 . x 2 x 1 + x 2 − 2 = 6 ⇒ 1 − 2 m − 2 m + 2 − 2 = 6 ⇔ 2 m 2 − m − 3 = 0
Ta có: a − b + c = 2 + 1 − 3 = 0 ⇒ m 1 = − 1 ; m 2 = 3 2
Vậy m= -1 hoặc m= 3/2
\(\Delta'=9-\left(2n-3\right)>0\Leftrightarrow n< 6\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)
Do \(x_1;x_2\) là nghiệm nên:
\(\left\{{}\begin{matrix}x_1^2-6x_1+2n-3=0\\x_2^2-6x_2+2n-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2n-4=x_1-1\\x_2^2-5x_2+2n-4=x_2-1\end{matrix}\right.\)
Thay vào bài toán:
\(\left(x_1-1\right)\left(x_2-1\right)=-4\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+5=0\)
\(\Leftrightarrow2n-3-6+5=0\Leftrightarrow n=2\)
Phương trình đã cho có nghiệm phân biệt khi :
\(\Delta'=m^2-\left(m^2+2m+3\right)=-2m-3>0\)
\(\Leftrightarrow m< -\dfrac{3}{2}\)(*)
Hệ thức Viette : \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=m^2+2m+3\end{matrix}\right.\)
Có \(x_1^3+x_2^3=108\)
\(\Leftrightarrow\left(x_1+x_2\right).\left(x_1^2-x_1x_2+x_2^2\right)=108\)
\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=108\)
\(\Leftrightarrow-8m^3+6m\left(m^2+2m+3\right)=108\)
\(\Leftrightarrow m^3-6m^2-9m+54=0\)
\(\Leftrightarrow\left(m-6\right).\left(m-3\right).\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=6\\m=\pm3\end{matrix}\right.\)
Kết hợp (*) được m = -3 thỏa mãn
Phương trình có hai nghiệm phân biệt x1, x2 ⇔ ∆ = 52 – 4(3m + 1) > 0 ⇔ 21 – 12m > 0
ó m < 21/12
Với m < 21/12 , ta có hệ thức x 1 + x 2 = 5 x 1 x 2 = 3 m + 1 V i e t '
⇒ | x 1 − x 2 | = ( x 1 − x 2 ) 2 = ( x 1 + x 2 ) 2 − 4 x 1 x 2 = 5 2 − 4 ( 3 m + 1 ) = 21 − 12 m = > | x 1 2 − x 2 2 | = | ( x 1 + x 2 ) ( x 1 − x 2 ) | = | 5 ( x 1 − x 2 ) | = 5 | x 1 − x 2 | = 5 21 − 12 m
Ta có: | x 1 2 − x 2 2 | = 15 ⇔ 5 21 − 12 m = 15 ⇔ 21 − 12 m = 3 ⇔ 21 − 12 m = 9 ⇔ 12 m = 12 ⇔ m = 1 (t/m)
Vậy m = 1 là giá trị cần tìm
Để phương trình 1 có 2 nghiệm phân biệt
=> \(\Delta,>0\) <=> \(\left[-\left(m-1\right)\right]^2-\left(-2m+5\right)>0\)
<=>\(\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
=> Theo hệ thức Vi ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\circledast\\x_1.x_2=-2m+5\circledast\circledast\end{matrix}\right.\)
Theo bài ra ta có
\(x_1-x_2=-2\circledcirc\)
Từ \(\circledast vaf\circledcirc\) ta có hệ pt
\(\left\{{}\begin{matrix}x1+x2=2m-2\\x1-x2=-2\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x1=m-2\\x2=m\end{matrix}\right.\)
Thay x1 và x2 vào \(\circledast\circledast\)ta dc
\(\left(m-2\right)m=-2m+5\)
<=> m=\(\left[{}\begin{matrix}-\sqrt{5}\\\sqrt{5}\end{matrix}\right.\left(tm\right)\)
Vậy ...
a: Khi m=1 thì (1): x^2-2(1-2)x+1^2-5-4=0
=>x^2+2x-8=0
=>(x+4)(x-2)=0
=>x=2 hoặc x=-4
b: Δ=(2m-4)^2-4(m^2-5m-4)
=4m^2-16m+16-4m^2+20m+16
=4m+32
Để pt có hai nghiệm phân biệt thì 4m+32>0
=>m>-8
x1^2+x2^2=-3x1x2-4
=>(x1+x2)^2+x1x2+4=0
=>(2m-4)^2+m^2-5m-4+4=0
=>4m^2-16m+16+m^2-5m=0
=>5m^2-21m+16=0
=>(m-1)(5m-16)=0
=>m=16/5 hoặc m=1
ai đó giải hộ được không ạ ' _ '