Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải \(\Delta\)
Vì x1,x2 là nghiệm của pt =>\(x_1^2-6x_1+2m-3=0;x_2-6x+2m-3=0\)
Áp dụng định lí vi -ét
\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\)
Thay vào ... ta được
\(\left(0+x_1-1\right).\left(0+x_2-1\right)=2\)
\(=>x_1.x_2-\left(x_1+x_2\right)+1=2\)
\(2m-3-6+1=2=>m=5\)(t/m)
Vậy...
Đặt \(x^2=t\left(t>0\right)\)
\(pt\Leftrightarrow t^2-2\left(m+1\right)t+4m=0\left(1\right)\)
Để pt có 4 nghiệm phân biệt \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\hept{\begin{cases}\Delta'=m^2+2m+1-4m>0\\x_1+x_2=2\left(m+1\right)>0\\x_1.x_2=4m>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2>0\\m>-1\\m>0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}m\ne1\\m>0\end{cases}}\)
giả sử \(\hept{\begin{cases}x_1^2=x_2^2=t_1\\x_3^2=x_4^2=t_2\end{cases}\Rightarrow2x_1^2}+2x_3^2=12\)
\(\Leftrightarrow2\left(t_1+t_2\right)=12\)
\(\Leftrightarrow2.2\left(m+1\right)=12\Leftrightarrow m+1=3\Leftrightarrow m=2\) (TM)
Vậy m=2 thì pt có 4 nghiệm pb
| x12 - x22| = 15 mình viết thiếu giải hộ mình với.Cảm ơn bạn
Đen ta =9(a+1)^2 - 4.a.(2a+4) (*) .Để phương trình có 2 nghiệm phân biệt thì đen ta >0 →(*) luôn đúng→x1=...;x2=... rồi thay vào biểu thức
phải ko nhể,có giống cách bạn làm ko ?
\(\Delta'=9-2m+3=12-2m>0\Rightarrow m< 6\)
Theo Viet ta có \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2m-3\end{matrix}\right.\)
Do \(x_1;x_2\) là nghiệm của pt nên:
\(\left\{{}\begin{matrix}x_1-6x_1+2m-3=0\\x_2-6x_2+2m-3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2m-4=x_1-1\\x_2^2-5x_2+2m-4=x_2-1\end{matrix}\right.\)
Ta có:
\(\left(x_1^2-5x_1+2m-4\right)\left(x_2^2-5x_2+2m-4\right)=2\)
\(\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)=2\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1=2\)
\(\Leftrightarrow2m-3-6+1=2\)
\(\Leftrightarrow2m=10\Rightarrow m=5\)
\(\Delta'=9-\left(2n-3\right)>0\Leftrightarrow n< 6\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=6\\x_1x_2=2n-3\end{matrix}\right.\)
Do \(x_1;x_2\) là nghiệm nên:
\(\left\{{}\begin{matrix}x_1^2-6x_1+2n-3=0\\x_2^2-6x_2+2n-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-5x_1+2n-4=x_1-1\\x_2^2-5x_2+2n-4=x_2-1\end{matrix}\right.\)
Thay vào bài toán:
\(\left(x_1-1\right)\left(x_2-1\right)=-4\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+5=0\)
\(\Leftrightarrow2n-3-6+5=0\Leftrightarrow n=2\)
Cho mình hỏi lại ở chỗ hpt ạ