Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
Thay m=4 phuong trình đã cho trở thành : \(x^2-9x+20=0\)
\(\Delta=81-80=1\) \(>0\) nên phương trình đã cho có hai nghiệm phân biệt \(x_1=5\) và \(x_2=4\).
2,
Ta có \(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\) với mọi \(m\) nên phuong trình đã cho có hai nghiệm phân biệt
\(x_1,x_2\) với mọi \(m.\)
Áp dụng định lý Vi-et : \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1x_2=m^2+m\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2-5x_1x_2=-17\) \(\Leftrightarrow\left(x_1+x_2\right)^2-7x_1x=-17\Leftrightarrow\left(2m+1\right)^2-7\left(m^2+m\right)=-17\Leftrightarrow m^2+m-6=0\)
\(\Rightarrow\hept{\begin{cases}m=-3\\m=2\end{cases}}\)
a, \(x^2-4x+3=0\Leftrightarrow x^2-x-3x+3=0\)
\(\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\Leftrightarrow\left(x-3\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Vậy tập nghiệm của phương trình là S = { 1 ; 3 }
b, Ta có : \(\Delta=\left(2m+2\right)^2-4\left(2m-5\right)=4m^2+8m+4-8m+20=4m^2+24>0\forall m\)
Theo Vi et ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m-2\\x_1x_2=\frac{c}{a}=2m-5\end{cases}}\)
Ta có : \(\left(x_1^2-2mx_1-x_2+2m-3\right)\left(x_2^2-2mx_2-x_1+2m-3\right)=19.1=1.19\)
TH1 : \(\hept{\begin{cases}x_1^2-2mx_1-x_2+2m-3=19\\x_2^2-2mx_2-x_1+2m-3=1\end{cases}}\)
Lấy phương trình (1) + (2) ta được :
\(x_1^2+x_2^2-2mx_1-2mx_2-x_2-x_1+4m-6=20\)
mà \(\left(x_1+x_2\right)^2=4m^2+8m+4\Rightarrow x_1^2+x_2^2=4m^2+8m+4-2x_1x_2\)
\(=4m^2+8m+4-2\left(2m-5\right)=4m^2+4m-6\)
\(\Leftrightarrow4m^2+4m-6-2m\left(2m-2\right)-\left(2m-2\right)+4m-6=20\)
\(\Leftrightarrow4m^2+4m-6-4m^2+4m-2m+2+4m-6=20\)
\(\Leftrightarrow10m=30\Leftrightarrow m=3\)tương tự với TH2, nhưng em ko chắc lắm vì dạng này em chưa làm bao giờ
a, \(\Delta=m^2-4\left(-4\right)=m^2+16\)> 0
Vậy pt luôn có 2 nghiệm pb
b, Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=-4\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-2x_1x_2=5\)
Thay vào ta được \(m^2-2\left(-4\right)=5\Leftrightarrow m^2+3=0\left(voli\right)\)
Bạn ơi, mình có thể hỏi câu c được không ạ? Nếu không được thì không sao, mình cảm ơn câu trả lời của bạn ạ ^-^ chúc bạn một ngày tốt lành nhé.
a: \(\Delta=\left(2m-2\right)^2-4\left(-m-3\right)\)
\(=4m^2-8m+4+4m+12\)
\(=4m^2-4m+16\)
\(=\left(2m-1\right)^2+15>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
b: Theo đề, ta có:
\(\left(x_1+x_2\right)^2-2x_1x_2>=10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-m-3\right)>=10\)
\(\Leftrightarrow4m^2-8m+4+2m+6-10>=0\)
\(\Leftrightarrow4m^2-6m>=0\)
=>m<=0 hoặc m>=3/2
a: Thay m=3 vào pt, ta được:
\(x^2-4x-1=0\)
\(\Leftrightarrow\left(x-2\right)^2=5\)
hay \(\left[{}\begin{matrix}x=\sqrt{5}+2\\x=-\sqrt{5}+2\end{matrix}\right.\)
b: \(\text{Δ}=\left(-4\right)^2-4\left(-2m+5\right)\)
\(=16+8m-20=8m-4\)
Để phương trình có hai nghiệm thì 8m-4>=0
hay m>=1/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2+3x_1x_2-3\left(x_1+x_2\right)=0\)
\(\Leftrightarrow4^2-3\cdot4+3\left(-2m+5\right)=0\)
\(\Leftrightarrow4-6m+15=0\)
=>-6m+19=0
hay m=19/6(nhận)
Lời giải:
1.
Khi $m=-1$ thì pt trở thành: $x^2+4x+2=0$
$\Leftrightarrow (x+2)^2=2$
$\Leftrightarrow x+2=\pm \sqrt{2}$
$\Leftrightarrow x=-2\pm \sqrt{2}$
2.
Ta thấy: $\Delta'=(m-1)^2+2m=m^2+1>0$ với mọi $m\in\mathbb{R}$
Do đó pt luôn có 2 nghiệm pb với mọi $m$
Áp dụng định lý Viet:
$x_1+x_2=2(m-1)$
$x_1x_2=-2m$
Khi đó:
$x_1^2+x_1-x_2=5-2m=3-2(m-1)=3-x_1-x_2$
$\Leftrightarrow x_1^2+2x_1-3=0$
$\Leftrightarrow (x_1-1)(x_1+3)=0$
$\Leftrightarrow x_1=1$ hoặc $x_1=-3$
Nếu $x_1=1$
$\Leftrightarrow x_2+1=2m-2$ và $x_2=-2m$
$\Rightarrow 2x_2+1=-2$
$\Leftrightarrow x_2=\frac{-3}{2}$
$-2m=x_1x_2=\frac{-3}{2}$
$m=\frac{3}{4}$
-------------
Nếu $x_1=-3$
$\Leftrightarrow x_2-3=2m-2$ và $-3x_2=-2m$
$\Leftrightarrow m=\frac{-3}{4}$
a)
\(m=6\)
\(\Rightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)
b)
\(\left|x_1-x_2\right|=3\)
\(\Leftrightarrow\left(x_1-x_2\right)^2=9\)
\(\Leftrightarrow x_1^2=2x_1x_2+x^2_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=9\)
Mà \(\left\{{}\begin{matrix}x_1+x_2=-5\\x_1-x_2=m\end{matrix}\right.\)
\(\Rightarrow25-4m=9\)
\(\Leftrightarrow4m=16\)
\(\Leftrightarrow m=4\)
1: \(\text{Δ}=\left(2m-2\right)^2-4\left(m-3\right)\)
\(=4m^2-8m+4-4m+12\)
\(=4m^2-12m+16\)
\(=\left(2m-3\right)^2+7>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
2: Theo vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=m-3\end{matrix}\right.\)
Ta có: \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=x_1x_2\)
\(\Leftrightarrow x_1^2+x_2^2=\left(m-3\right)^2\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(m-3\right)-\left(m-3\right)^2=0\)
\(\Leftrightarrow4m^2-16m+4-2m+6-m^2+6m-9=0\)
\(\Leftrightarrow3m^2-12m+1=0\)
\(\text{Δ}=\left(-12\right)^2-4\cdot3\cdot1=144-12=132>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{12-2\sqrt{33}}{6}=\dfrac{6-\sqrt{33}}{3}\\x_2=\dfrac{6+\sqrt{33}}{3}\end{matrix}\right.\)
1. Khi $m=4$ thì phương trình trở thành $x^2-9x+20=0\Leftrightarrow (x-4)(x-5)=0$ hay $x=4$ hoặc $x=5$ là các nghiệm của phương trình.
2. Ta có \(\Delta=\left(2m+1\right)^2-4\left(m^2+m\right)=1>0\) nên phương trình luôn có 2 nghiệm phân biệt, hơn thế nữa ta có $x^2-(2m+1)x+m^2+m=0$ có 2 nghiệm là $x_1,x_2$ thì theo định lý Viete ta có $x_1+x_2=2m+1,x_1.x_2=m^2+m$, ta có $-17=(x_1+x_2)^2-7x_1.x_2=(2m+1)^2-7(m^2+m)$ hay $-3m^2-3m+18=0\Leftrightarrow 3(m+3)(m-2)=0$, vậy $m=2,m=-3$ là các giá trị cần tìm