Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{Δ}=\left(2k+1\right)^2-4\left(k^2+4\right)\)
\(=4k^2+4k+1-4k^2-16=4k-15\)
Để phương trình có hai nghiệm phân biệt thì 4k-15>0
=>k>15/4
\(x_1^2+x_2^2=63\)
=>(x1+x2)^2-2x1x2=63
=>(2k+1)^2-2(k^2+4)=63
=>4k^2+4k+1-2k^2-8=63
=>2k^2+4k-7-63=0
=>2k^2+4k-70=0
=>k^2+2k-35=0
=>(k+7)(k-5)=0
=>k=-7(loại) hoặc k=5(nhận)
a: Thay k=-3 vào pt, ta được:
\(x^2-2\cdot\left(-3+2\right)x+\left(-3\right)^2+2\cdot\left(-3\right)-7=0\)
\(\Leftrightarrow x^2+2x-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=5\)
hay \(x\in\left\{\sqrt{5}-1;-\sqrt{5}-1\right\}\)
b: \(\text{Δ}=\left(2k+4\right)^2-4\left(k^2+2k-7\right)\)
\(=4k^2+16k+16-4k^2-8k+28\)
=8k+44
Để phương trình có hai nghiệm thì 8k+44>=0
=>8k>=-44
hay k>=-11/2
Theo đề, ta có: \(\left(x_1+x_2\right)^2-3x_1x_2=28\)
\(\Leftrightarrow\left(2k+4\right)^2-3\cdot\left(k^2+2k-7\right)=28\)
\(\Leftrightarrow4k^2+16k+16-3k^2-6k+21=28\)
\(\Leftrightarrow k^2+10k+37-28=0\)
\(\Leftrightarrow\left(k+1\right)\left(k+9\right)=0\)
=>k=-1
Xét pt :
\(x^2-2\left(k+2\right)x+k^2+2k-7=0\)
\(\Delta'=\left(k+2\right)^2-\left(k^2+2k-7\right)\)
\(=k^2+4k+4-k^2-2k+7\)
\(=2k+11\)
Để phương trình có 2 nghiệm pb \(\Leftrightarrow k>-\dfrac{11}{2}\)
Theo định lí Viet ta có :
\(\left\{{}\begin{matrix}x_1+x_2=2\left(k+2\right)\\x_1.x_2=k^2+2k-7\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2=x_1.x_2+28\)
\(\Leftrightarrow\left(x_1+x_2\right)^2=3x_1.x_2+28\)
\(\Leftrightarrow4\left(k+2\right)^2=3\left(k^2+2k-7\right)+28\)
Tự giải hết pt tìm k nhé :> Buồn ngủ quá ~
a) Ta có: \(\Delta=\left(-4\right)^2-4\cdot1\cdot\left(2m-3\right)=16-4\left(2m-3\right)\)
\(\Leftrightarrow\Delta=16-8m+12=-8m+28\)
Để phương trình có hai nghiệm x1;x2 phân biệt thì \(-8m+28>0\)
\(\Leftrightarrow-8m>-28\)
hay \(m< \dfrac{7}{2}\)
Với \(m< \dfrac{7}{2}\) thì phương trình có hai nghiệm phân biệt x1;x2
nên Áp dụng hệ thức Viet, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-4\right)}{1}=4\\x_1\cdot x_2=\dfrac{2m-3}{1}=2m-3\end{matrix}\right.\)
Để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau thì
\(\left\{{}\begin{matrix}m< \dfrac{7}{2}\\4+2m-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\2m=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{7}{2}\\m=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m=-\dfrac{1}{2}\)
Vậy: Khi \(m=-\dfrac{1}{2}\) thì phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn tổng 2 nghiệm và tích hai nghiệm là hai số đối nhau
Lời giải:
Xin chỉnh sửa lại chút, tìm $k$, chứ không phải tìm $m$.
PT $\Leftrightarrow x^2-(6k-2)=0\Leftrightarrow x^2=6k-2$
Để pt có 2 nghiệm phân biệt thì $6k-2>0\Leftrightarrow k>\frac{1}{3}$
Khi đó:
$x_1=\sqrt{6k-2}$ và $x_2=-\sqrt{6k-2}$
Để $3x_1-x_2=2$
$\Leftrightarrow 3\sqrt{6k-2}+\sqrt{6k-2}=2$
$\Leftrightarrow \sqrt{6k-2}=\frac{1}{2}\Rightarrow k=\frac{3}{8}$
a: x^2-mx+m-1=0
Khi m=5 thì (1) sẽ là x^2-5x+4=0
=>x=1 hoặc x=4
b:Δ=(-m)^2-4(m-1)=m^2-4m+4=(m-2)^2
Để phươg trình có 2 nghiệm phân biệt thì m-2<>0
=>m<>2
x2=2x1
x2+x1=m
=>3x1=m và x2=2x1
=>x1=m/3 và x2=2/3m
x1*x2=m-1
=>2/9m^2-m+1=0
=>2m^2-9m+9=0
=>2m^2-3m-6m+9=0
=>(2m-3)(m-3)=0
=>m=3 hoặc m=3/2
Em ko ghi đc dấu căn nên em đóng ngoặc nghĩa là cả cụm đó dưới dấu căn
a) Khi \(m=1\) thì pt đã cho trở thành \(x^2-2x-10=0\) (*)
pt (*) có \(\Delta'=\left(-1\right)^2-\left(-10\right)=11>0\)
Do đó (*) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}x_1=\dfrac{-\left(-1\right)+\sqrt{11}}{1}=1+\sqrt{11}\\x_2=\dfrac{-\left(-1\right)-\sqrt{11}}{1}=1-\sqrt{11}\end{matrix}\right.\)
b) Xét pt đã cho \(x^2-mx-10=0\) \(\left(a=1;b=-m;c=-10\right)\)
Nhận thấy \(ac=1\left(-10\right)=-10< 0\) nên pt đã cho luôn có 2 nghiệm phân biệt \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{-m}{1}=m\\x_1x_2=\dfrac{-10}{1}=-10\end{matrix}\right.\)
Ta có \(x_1^2+x_2^2=29\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=29\Leftrightarrow m^2-2\left(-10\right)=29\)\(\Leftrightarrow m^2+20=29\Leftrightarrow m^2=9\Leftrightarrow m=\pm3\)
Vậy để pt đã cho có 2 nghiệm phân biệt thỏa mãn đề bài thì \(m=\pm3\)