Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Δ=(-4)^2-4(4m+3)
=16-16m-12
=-16m+4
Để phương trình có hai nghiệm phân biệt thì -16m+4>0
=>-16m>-4
=>m<1/4
b: x1^2+x2^2=9
=>(x1+x2)^2-2x1x2=9
=>4^2-2(4m+3)=9
=>2(4m+3)=16-9=7
=>4m+3=7/2
=>4m=1/2
=>m=1/8(nhận)
a: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(m^2-4m+5\right)\)
\(=4\left(m+1\right)^2-4\left(m^2-4m+5\right)\)
\(=4m^2+8m+4-4m^2+16m-20\)
=24m-16
Để phương trình có hai nghiệm thì Δ>=0
=>24m-16>=0
=>24m>=16
=>\(m>=\dfrac{2}{3}\)
b: Bạn xem lại đề nha bạn
a) Thay m=-2 vào phương trình, ta được:
\(x^2+4x+3=0\)
a=1; b=4; c=3
Vì a-b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=-1;x_2=\dfrac{-c}{a}=-3\)
a.
Do \(x_1=-1\) là nghiệm
\(\Rightarrow\left(m-3\right).\left(-1\right)^2+\left(m+5\right).\left(-1\right)-m+7=0\)
\(\Rightarrow m-3-m-5-m+7=0\)
\(\Rightarrow m=-1\)
Theo định lý Viet:
\(x_1+x_2=-\dfrac{m+5}{m-3}=1\Rightarrow x_2=1-x_1=2\)
b.
Đề bài câu này sai, với \(m=3\) pt này chỉ có 1 nghiệm \(x=-\dfrac{1}{2}\)