Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+\left(m-2\right)x-8=0\)
\(\Delta=b^2-4ac=\left(m-2\right)^2-4.1.\left(-8\right)=\left(m-2\right)^2+32\)
Vì \(\left(m-2\right)^2\ge0\forall m\)
\(\Rightarrow\left(m-2\right)^2+32\ge32>0\forall m\)
Vậy phương trình luôn có hai nghiệm phân biệt với mọi m
Theo định lí vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=2-m\\x_1x_2=\frac{c}{a}=-8\end{cases}}\Rightarrow x_2=\frac{-8}{x_1}\)
Theo bài ra ta có:\(A=\left(x_1^2-1\right)\left(x_2^2-4\right)=\left(x_1^2-1\right)\left(\frac{64}{x_1^2}-4\right)=68-4\left(x_1^2+\frac{16}{x_1^2}\right)\le68-4.8=36\)
Dấu "=" xảy ra <=> \(x_1=\pm2\)
+Với \(x_1=2\Rightarrow m=4\)
+Với \(x_1=-2\Rightarrow m=0\)
Vậy \(A=\left(x_1^2-1\right)\left(x_2^2-4\right)\)đạt GTLN là 36 \(\Leftrightarrow m=0;m=4\)
quy đồg bỏ mẫu ta được( đk x khác 0, x khác -1)
x2+mx+(x+1)(x-2)=2x(x+1)
x2+mx=(x+1)(2x-(x-2))
x2+mx=(x+1)(x+2)
x2+mx=x2+3x+2
(m-3)x=2
vậy để pt vô nghiệm thì m-3=0 hay m=3
nhân chéo
x^2+xm+2x+x+m+2=x^2-xm+x
=>2xm+2x+m+2=0
=>2x(m+1)+m+2=0
để pt vô nghiệm thì m+1=0=>m=-1
\(\Delta=4m^2+4m+1-4m^2-4m+24=25>0\)
suy ra phương trình có 2 nghiệm x1, x2 thỏa mãn:
\(\hept{\begin{cases}x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{2m+1+5}{2}=m+3\\x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{2m+1-5}{2}=m-2\end{cases}}\)
hoặc ngược lại, x1=m-2 và x2=m+3
Nếu x1=m+3 và x2=m-2 thay vào ta có: \(\left(m-2\right)^2-4\left(m+3\right)=m^2-4m+4-4m-12=m^2-8\ge-8\)
Nếu ngược lại thay vào ta có:
\(\left(m+3\right)^2-4\left(m-2\right)=m^2+6m+9-4m+8=m^2-2m+17=\left(m-1\right)^2+16\ge16\)
Vậy m=0 thì thỏa mãn biểu thức đó nhỏ nhất