K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2023

giải giúp mình vớivui

11 tháng 2 2023

Thay \(t=3\) vào pt trên :

\(\Rightarrow\dfrac{2}{5-3}-a-3=2a\left(a+2\right)\)

\(\Rightarrow21-a-3-2a^2-4a=0\)

\(\Rightarrow-2a^2-5a+18=0\)

\(\Rightarrow\left\{{}\begin{matrix}a_1=2\\a_2=-\dfrac{9}{2}\end{matrix}\right.\)

Vậy để pt có \(t=-3\) là nghiệm thì \(a=2\) và \(a=-\dfrac{9}{2}\)

11 tháng 2 2020

Thay t = 3 vào phương trình, ta được:

\(1-a-3=2a\left(a+2\right)\)

\(\Leftrightarrow-2-a=2a^2+4a\)

\(\Leftrightarrow2a^2+5a+2=0\)

Ta có \(\Delta=5^2-4.2.2=9,\sqrt{\Delta}=3\)

\(\Rightarrow\orbr{\begin{cases}a=\frac{-5+3}{4}=\frac{-1}{2}\\a=\frac{-5-3}{4}=-2\end{cases}}\)

13 tháng 2 2021

a, \(\frac{1}{2}\left(x+1\right)\left(3-x\right)+x=3\)

\(\Leftrightarrow\frac{1}{2}\left(x+1\right)\left(3-x\right)-\left(3-x\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(\frac{x}{2}+\frac{1}{2}-1\right)=0\)

\(\Leftrightarrow\left(3-x\right)\frac{x-1}{2}=0\Leftrightarrow x=3;x=1\)

b, \(\left(2x+1\right)\left(1-x\right)+2x=2\)

\(\Leftrightarrow\left(2x+1\right)\left(1-x\right)-2\left(1-x\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(1-x\right)=0\Leftrightarrow x=\frac{1}{2};x=1\)

c, Vì t = 3 là nghiệm của phương trình nên thay t = 3 vào phương trình trên ta được : 

\(\Rightarrow\frac{2}{5}-3-a-3=2a\left(a+2\right)\Leftrightarrow\frac{2}{5}-6-a=2a\left(a+2\right)\)

\(\Leftrightarrow\frac{2-30-5a}{5}=\frac{10a\left(a+2\right)}{5}\)Khử mẫu :

\(\Rightarrow-28-5a=10a^2+20a\)

\(\Leftrightarrow-10a^2-25a-28=0\) tự làm nốt nhé !!!

d, \(\left(x-2\right)^2=\left(2x+3\right)^2\)

TH1 : \(x-2=2x+3\Leftrightarrow x=-5\)

TH2 : \(x-2=-2x-3\Leftrightarrow x=-\frac{1}{3}\)

30 tháng 3 2019

Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2.

Suy ra, phương trình (3) có nghiệm x = 2

Thay giá trị x = 2 vào phương trình này, ta được (a − 2)2 = a + 3.

Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này: (a − 2)2 = a + 3 ⇔ a = 7

Khi a = 7, dễ thử thấy rằng phương trình (a − 2)x = a + 3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.

10 tháng 2 2021

undefined

26 tháng 3 2018

a. Nhân hai vế của phương trình (1) với 24, ta được:\(\frac{7x}{8}\)−5(x−9)⇔\(\frac{1}{6}\)(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=67x8−5(x−9)⇔16(20x+1,5)⇔21x−120(x−9)=4(20x+1,5)⇔21x−120x−80x=6−1080⇔−179x=−1074⇔x=6

Vậy phương trình (1) có một nghiệm duy nhất x = 6.

b. Ta có:

2(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+32(a−1)x−a(x−1)=2a+3⇔(a−2)x=a+3                          (3)

Do đó, khi a = 2, phương trình (2) tương đương với phương trình 0x = 5.

Phương trình này vô nghiệm nên phương trình (2) vô nghiệm.

c. Theo điều kiện của bài toán, nghiệm của phương trình (2) bằng một phần ba nghiệm của phương trình (1) nên nghiệm đó bằng 2. Do (3) nên phương trình (2) có nghiệm x = 2 cũng có nghĩa là phương trình (a−2)2=a+3(a−2)2=a+3 có nghiệm x = 2. Thay giá trị x = 2 vào phương trình này, ta được(a−2)2=a+3(a−2)2=a+3. Ta coi đây là phương trình mới đối với ẩn a. Giải phương trình mới này:

(a−2)2=a+3⇔a=7(a−2)2=a+3⇔a=7

Khi a = 7, dễ thử thấy rằng phương trình (a−2)x=a+3(a−2)x=a+3 có nghiệm x = 2, nên phương trình (2) cũng có nghiệm x = 2.

16 tháng 4 2018

PT <=> 2aX-2X-aX+a=2a+1

<=> aX-2X=a+1  <=> (a-2)X=a+1

Để PT có nghiệm duy nhất => a-2\(\ne\)0  => a\(\ne\)2

PT có nghiệm là: \(X=\frac{a+1}{a-2}=\frac{a-2+3}{a-2}=1+\frac{3}{a-2}\)

28 tháng 5 2018

bn copy ghê

12 tháng 1 2018

Nhân hai vế của phương trình (1) với 24, ta được:

7x/8 - 5(x - 9) = 1/6(20x + 1,5)

⇔21x − 120(x − 9) = 4(20x + 1,5)

⇔21x − 120x − 80x = 6 − 1080

⇔−179x = −1074 ⇔ x = 6

Vậy phương trình (1) có một nghiệm duy nhất x = 6.