Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Xét phương trình đề cho có :
\(\Delta^,=b^{,2}-ac=\left(m-1\right)^2-\left(m-2\right)=m^2-2m+1-m+2\)
\(=m^2-3m+3\ge\dfrac{3}{4}>0\)
- Phương trình luôn có hai nghiệm phân biệt với mọi m .
- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\x_1x_2=m-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)=2m-2\\2x_1x_2=2m-4\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-2x_1x_2=2m-2-2m+4=2\)
b/ Ta có: x1 + x2 = 2m + 2
x1x2 = m - 4
M = x1(1 - x2) + x2(1 - x1) = x1 - x1x2 + x2 - x1x2 = (x1 + x2) - 2x1x2 = (2m + 2) - 2.(m - 4) = 10
Vậy không phụ thuộc vào m
Ta có: \(x^2-2\left(m+1\right)x+m-4=0\)
Phương trình có hai nghiệm phân biệt khi △'>0\(\Leftrightarrow\left(m+1\right)^2-m+4>0\Leftrightarrow m^2+m+5>0\)(luôn đúng)
Theo Vi-ét \(x_1+x_2=2\left(m+1\right);x_1x_2=m-4\)
\(A=x_1+x_2-2x_1x_2+2021=2\left(m+1\right)-2\left(m-4\right)+2021=2031\) không phụ thuộc vào m
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
Δ=(2m+2)^2-4(-m-4)
=4m^2+8m+4+4m+16
=4m^2+12m+20
=4m^2+12m+9+11=(2m+3)^2+11>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
M=x1(1-x1)+x2(1-x2)
=x1+x2-x1^2-x2^2
=(x1+x2)-(x1^2+x2^2)
=(x1+x2)-(x1+x2)^2+2x1x2
=(-2m-2)-(-2m-2)^2+2(-m-4)
=-2m-2-2m-8-(4m^2-8m+4)
=-4m-10-4m^2+8m-4=-4m^2+4m-14
Xét \(\Delta'=\left(m+1\right)^2-\left(-m-4\right)=m^2+3m+5=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}>0\forall m\)
Suy ra pt có hai nghiệm pb với mọi m
Theo hệ thức viet có:
\(\left\{{}\begin{matrix}x_1+x_2=-2m-2\\x_1x_2=-m-4\end{matrix}\right.\)
\(M=x_1-x_1^2+x_2-x_2^2=x_1+x_2-\left(x_1+x_2\right)^2+2x_1x_2\)
\(=-2m-2-\left(-2m-2\right)^2+2\left(-m-4\right)\)
Qua đó thấy M phụ thuộc vào m
a: Δ=(2m-1)^2-4*(-m)
=4m^2-4m+1+4m=4m^2+1>0
=>Phương trình luôn có nghiệm
b: \(A=\left(x_1+x_2\right)^2-2x_1x_2-x_1x_2\)
\(=\left(2m-1\right)^2-3\left(-m\right)\)
=4m^2-4m+1+3m
=4m^2-m+1
=4(m^2-1/4m+1/4)
=4(m^2-2*m*1/8+1/64+15/64)
=4(m-1/8)^2+15/16>=15/16
Dấu = xảy ra khi m=1/8
Câu a của bài này rất vô lý vì lớp 9 chưa học cách xác định nghiệm của BPT bậc 2.
\(\Delta=\left(m-2\right)^2-4\left(2m-3\right)=m^2-12m+16\)
a.
Phương trình có 2 nghiệm pb khi:
\(m^2-12m+16>0\Rightarrow\left[{}\begin{matrix}m>6+2\sqrt{5}\\m< 6-2\sqrt{5}\end{matrix}\right.\)
b.
Khi pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=2m-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m-4\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(2\left(x_1+x_2\right)-x_1x_2=-1\)
Đây là biểu thức liên hệ 2 nghiệm ko phụ thuộc m
ta có theo VI-et thì \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-4\end{cases}}\)
Nên \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)=\left(x_1+x_2\right)-2x_1x_2=2\left(m-1\right)-2\left(m-4\right)=6\)khonong phụ thuộc vào m