K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2020

Phương trình có nghiệm x = 1/2

=> \(8\left(\frac{1}{2}\right)^2-8\cdot\frac{1}{2}+m^2+1=0\)

=> \(8\cdot\frac{1}{4}-8\cdot\frac{1}{2}+m^2+1=0\)

=> 2 - 4 + m2 + 1 = 0 \(\Leftrightarrow\)m2-1=0  \(\Leftrightarrow\)m2 = 1 \(\Leftrightarrow\)m= \(\pm1\)

Vậy với m = \(\pm1\)thì x có nghiệm duy nhất là x = \(\frac{1}{2}\)

3 tháng 6 2020

Thay x=\(\frac{1}{2}\) vào phương trình ta có 

 \(8.\left(\frac{1}{2}\right)^2-8.\frac{1}{2}+m^2+1=0\)

\(\Leftrightarrow8.\frac{1}{4}-4+m^2+1=0\)

\(\Leftrightarrow2-4+m^2+1=0\)

\(\Leftrightarrow m^2-1=0\)

\(\Leftrightarrow m^2=1\Rightarrow m=\pm1\)

Thay m=1 vào phương trình ta có 

\(8x^2-8x+1^2+1=0\)

\(\Leftrightarrow8x^2-8x+2=0\)

Ta có  \(\Delta'=\left(-4\right)^2-8.2=16-16=0\)

\(\Rightarrow\)Phương trình có nghiệm kếp \(x_1=x_2=\frac{-b'}{a}=-\frac{-4}{8}=\frac{1}{2}\)

Thay m=-1 vào ta có kết quả tương tụ 

Vậy nghiệm còn lại là \(\frac{1}{2}\)

Nhớ k cho mình nha 

16 tháng 4 2020

Ta có:

\(8x^2-8x+m+1=0\left(a=8;b'=-4;c=m+1\right)\)

Xét \(\Delta'=16-8m-8=8-8m\)

để pt có nghiệm  \(\Leftrightarrow\Delta'\ge0\Leftrightarrow8-8m\ge0\Leftrightarrow m\le1\)

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{4+\sqrt{8-8m}}{8}=\frac{4+2\sqrt{2-2m}}{8}=\frac{2+\sqrt{2-2m}}{4}\)

Vì \(x_1=\frac{1}{2}\Rightarrow\frac{2+\sqrt{2-2m}}{4}=\frac{1}{2}\)

                    \(\Rightarrow2+\sqrt{2-2m}=2\)

                    \(\Leftrightarrow2-2m=0\)

                   \(\Leftrightarrow m=1\)(tm đk)

Vì \(m=1\Rightarrow\Delta'=0\Rightarrow\)pt có nghiệm kép\(\Rightarrow x_1=x_2=\frac{1}{2}\)

b: Thay x=-5 vào pt, ta được:

\(m+25+65=0\)

hay m=-90

Theo đề, ta có: \(x_1+x_2=13\)

nên \(x_2=18\)

c: Thay x=-3 vào pt, ta được:

\(18+3\left(m+4\right)+m=0\)

=>4m+30=0

hay m=-15/2

Theo đề, ta có: \(x_1\cdot x_2=-\dfrac{m}{2}=\dfrac{15}{4}\)

hay \(x_2=-1.25\)

15 tháng 3 2020

\(8x^2-8x+m^2+1=0\) ( 1 )

\(\Delta'=16-8\left(m^2+1\right)=16-8m^2-8=8-8m^2\)

PT ( 1 ) có hai nghiệm x1,x2 \(\Leftrightarrow\Delta'=8-8m^2\ge0\)\(\Leftrightarrow m^2\le1\Leftrightarrow-1\le m\le1\)

Áp dụng hệ thức Vi-ét, ta có : 

\(\hept{\begin{cases}x_1+x_2=1\\x_1x_2=\frac{m^2+1}{8}\end{cases}}\)

Do đó : \(x_1^4-x_2^4=x_1^3-x_2^3\)

\(\Leftrightarrow x_1^4-x_1^3=x_2^4-x_2^3\)

\(\Leftrightarrow x_1^3\left(x_1-1\right)-x_2^3\left(x_2-1\right)=0\Leftrightarrow-x_1^3x_2+x_2^3x_1=0\)

\(\Leftrightarrow x_1x_2\left(x_1^2-x_2^2\right)=0\Leftrightarrow x_1x_2\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)

Dễ thấy \(x_1x_2=\frac{m^2+1}{8}>0;x_1+x_2=1>0\)nên \(x_1-x_2=0\Leftrightarrow x_1=x_2\)

Từ đó tìm được \(m=\pm1\)

23 tháng 3 2022

a)thay m=1 vào pt ta có 

\(x^2+4x=0\)

<=> \(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

b) thay x=2 vào pt ta có: 13+m=0

<=>m=-13

thay m=-13 vào pt ta có

\(x^2+4x-12=0\)

<=>(x-2)(x+6)=0

<=>\(\left[{}\begin{matrix}x=2\\x=-6\end{matrix}\right.\)\(\)

vậy với m=-13 thì nghiệm còn lại là x=-6

c) để pt có 2 nghiệm pb thì \(\Delta>0\)

<=>16-4m-4>0

<=>3-m>0

<=>m<3

áp dụng định lí Vi-ét ta có\(\left\{{}\begin{matrix}x_1+x_2=-4\\x_1x_2=m+1\end{matrix}\right.\)

theo đề bài ta có \(x_1^2+x_2^2=10\)

<=>\(\left(x_1+x_2\right)^2-2x_1x_2=10\)

<=>16-2m-2=10

<=>2-m=0

<=>m=2(nhận)

vậy với m=2 thì pt có 2 nghiệm pb thỏa yêu cầu đề bài.

 

 

12 tháng 4 2023

a) \(x^2-mx+2m-4=0\) nhận \(x=3\) là nghiệm nên:

\(3^2-m.3+2m-4=0\)

\(\Leftrightarrow9-3m+2m-4=0\)

\(\Leftrightarrow m-5=0\)

\(\Leftrightarrow m=5\)

Vậy phương trình trở thành: \(x^2-5x+6=0\) nhận x=3 là nghiệm vậy nghiệm còn lại là:

\(\Delta=\left(-5\right)^2-4.1.6=1\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)+\sqrt{1}}{2.1}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(-5\right)-\sqrt{1}}{2.1}=2\end{matrix}\right.\)

Vậy nghiệm còn lại là \(x=2\)