Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có hai nghiệm thì \(\Delta'>0\).
\(\Delta'=\left(m-2\right)^2+\left(m-1\right)=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\)
Do đó phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo Viet:
\(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+1\end{cases}}\)
\(x_1^2-2x_1x_2+x_2^2+4x_1^2x_2^2=\left(x_1+x_2\right)^2-4x_1x_2+4x_1^2x_2^2\)
\(=4\left(m-2\right)^2+4\left(m-1\right)+4\left(m-1\right)^2=4\left(2m^2-5m+4\right)=4\)
\(\Leftrightarrow2m^2-5m+4=1\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=1\end{cases}}\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
\(a)\Delta=b^2-4ac\\ =\left(2x-1\right)^2-4.2.\left(m-1\right)\\ =4m^2-12m+9\)
Phương trình có 2 nghiệm phân biệt khi : \(\Delta\ge0\)
Hay \(4m^2-12m+9\ge0\)
\(\Leftrightarrow\left(2m-3\right)^2\ge0\forall m\)
Theo hệ thức Vi - et:
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{2m-1}{2}\\x_1x_2=\frac{m-1}{2}\end{matrix}\right.\)
\(4x_1^2+4x_2^2+2x_1x_2=1\\ \Leftrightarrow4\left(x_1^2+x^2_2\right)+2x_1x_2=1\\ \Leftrightarrow4\left[\left(x_1+x_2\right)^2-2x_1x_2\right]+2x_1x_2=1\\ \Leftrightarrow4\left[\left(-\frac{2m-1}{2}\right)^2-2.\frac{m-1}{2}\right]+2.\frac{m-1}{2}=1\\ \Leftrightarrow4m^2-7m+3=0\\ \Leftrightarrow\left[{}\begin{matrix}m=1\\m=\frac{3}{4}\end{matrix}\right.\)
Vậy...
a)
\(\Delta=\left(2m-1\right)^2-4\cdot2\cdot\left(m-1\right)=4m^2-4m+1-8m+4\)
\(=4m^2-12m+5=4\left(m^2-3m+\frac{9}{4}\right)-4\)\(=4\left(m^2-\frac{3}{2}\right)^2-4\)
Để pt có hai nghiệm pb thì
\(4\left(m-\frac{3}{2}\right)^2\ge4\Leftrightarrow\left(m-\frac{3}{2}\right)^2\ge1\)
\(\Rightarrow\left[{}\begin{matrix}m-\frac{3}{2}\ge1\\m-\frac{3}{2}\le-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m\ge\frac{5}{2}\\m\le\frac{1}{2}\end{matrix}\right.\)
Theo hệ thức Vi-ét
\(\left\{{}\begin{matrix}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{matrix}\right.\)
Ta có
\(4x_1^2+4x_2^2+2x_1x_2=1\Rightarrow\left(x_1+x_2\right)^2+3\left(x_1+x_2\right)=1\)
\(\Rightarrow\left(\frac{1-2m}{2}\right)^2+3\left(\frac{1-2m}{2}\right)=1\)
giải pt để tìm m
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
\(2x^2+\left(2m-1\right)x+m-1=0\)
Thay m=2 vào phương trình ta có
\(2x^2+\left(4-1\right)x+2-1=0\)
\(\Leftrightarrow2x^2+3x+1=0\)
\(\Delta=3^2-4.2.1\)
\(=9-8\)
\(=1>0\Rightarrow\sqrt{\Delta}=1\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-3-1}{4}=-1\) \(x_2=\dfrac{-3+1}{4}=\dfrac{-1}{2}\)
Vậy phương trình có 2 nghiệm là \(x_1=-1;x_2=\dfrac{-1}{2}\)khi m=2
b,\(4x_1^2+2x_1x_2+4x_2^2=1\)
\(\Leftrightarrow4\left(x_1^2+x_2^2\right)+2x_1x_2=1\)
\(\Leftrightarrow4\left(x_1+x_2\right)=1\)
\(\Leftrightarrow4.\left(2m-1\right)^2=1\)
\(\Leftrightarrow2m-1=\dfrac{1}{2}\)
\(\Leftrightarrow2m=\dfrac{3}{2}\)
\(\Leftrightarrow m=\dfrac{3}{4}\)
-Chúc bạn học tốt-