Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích \(\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)+91}{3n+4}\)
Để \(\frac{6n+99}{3n+4}\) là phân số tối giản thì 91 phải chia hết cho 3n+4
Vì 91=7.13 nên 3n+4\(\in\){1;7;13;91} nên
trường hợp 1:3n+4=1=>n=-1(loại)
trường hợp 2:3n+4=7=>n=1
trường hợp 3:3n+4=13=>n=3
trường hợp 4:3n+4=91=>n=29
Vậy n\(\in\) {1;3;29}
Phàn a) dễ oy , tự lm nhé !
b) Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)
Để \(A_{min}\Leftrightarrow\frac{5}{3n+2}max\)
Xét 3n+2>0 =>3n>-2=>n>\(\frac{-2}{3}\)=> n >hoặc = 0(vì n \(\in\)Z )=>\(\frac{5}{3n+2}\)>0 (1)
Xét 3n+2<0 => 3n<-2 =>n<\(\frac{-2}{3}\)=>\(\frac{5}{3n+2}\)<0 (2)
từ (1) và (2) và do \(\frac{5}{3n+2}\)max => ta chọn trường hợp (1)
p/s \(\frac{5}{3n+2}\)dương có tử số dương ko đổi nên A bé nhất khi mẫu số bé nhất \(\Leftrightarrow\)n nhỏ nhất \(\Leftrightarrow\)n=0
Vậy \(A_{min}=\frac{-1}{2}\Leftrightarrow n=0\)
a)có \(\frac{n+10}{2n}=\frac{n}{2n}
+\frac{10}{2n}=\frac{1}{2}+\frac{5}{n}\)
vậy 2 ps cần tìm la 1/2 và 5/n
b)
để A =1/2+5/n
để A đạt GTLN-->5/n lớn nhất (n<0)
mà vì 2n là mẫu thì nếu n lớn thì ps sẽ nhỏ hơn-->n bé nhất
-->0<n và n bé nhất-->n=1
__________________________________________________
li-ke cho mk nhé bn
Cho phân số \(A=\frac{2n+8}{n+1}\)(n \(\varepsilon\)N) . Tìm các số tự nhiên n để A là số nguyên tố.
a) \(P=\frac{3n+5}{6n}=\frac{n+2}{6n}+\frac{2n+3}{6n}\)
b) \(P=\frac{3n}{6n}+\frac{5}{6n}=\frac{3}{6}+\frac{5}{6n}\)=> để P lớn nhất 6n phải bé nhất => n = 1
\(GTLN.P=\frac{3}{6}+\frac{5}{6}=\frac{8}{6}=\frac{4}{3}\)