Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với \(n\in Z\)thì để \(\frac{5}{n-4}\)có giá trị là số nguyên
\(\Rightarrow5⋮n-4\)
\(\Rightarrow n-4\)là ước của \(5\)
Mà các ước của \(5\) là : \(5;1;-1;-5\)
Ta có bảng sau :
\(n-4\) | \(5\) | \(1\) | \(-1\) | \(-5\) |
\(n\) | \(9\) | \(5\) | \(3\)\(\) | \(-1\) |
\(KL\) | \(TM\) | \(TM\) | \(TM\) | \(TM\) |
Vậy \(n\in\left\{9;5;3;-1\right\}\)thì \(\frac{5}{n-4}\)có giá trị là số nguyên.
b) Với \(n=5\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{5-4}=5\)
Với \(n=-1\)
\(\Rightarrow A=\frac{5}{n-4}=\frac{5}{\left(-1\right)-4}=-1\)
a)Ta có ; để A thuộc N <=> (2n+5) chia hết cho (3n+1)
<=> 3(2n+5) chia hết cho (3n+1)
<=>(6n+15) chia hết cho (3n+1)
<=> (6n + 2 +13) chia hết cho (3n+1)
<=> 13 chia hết cho (3n+1)
=> (3n+1) thuộc Ư(13)
Vì n thuộc N
=> (3n+1) = 1,13
=> n = 0 hoặc 4
b)Trong phần này ta sẽ áp dung 1 tính chất sau:
a/b < (a+m)/(b+m) với a<b
Ta thấy :
x/(x+y) > x/(x+y+z)
y/(y+z) > y/(x+y+z)
z/(z+x) > z/(x+y+z)
=> A > x/(x+Y+z) + y/(x+y+z) + z/(x+y+z)
=> A>1
Ta thấy :
x/x+y < (x+z)/(x+y+z)
y/y+z < (y+x)/(x+y+z)
z/z+x < (z+y)/(x+y+z)
=> A < (x+z)/(x+y+z) +(y+x)/(x+y+z) +(z+y)/(x+y+z)
=>A< 2(x+y+z)/(x+y+z)
=> A<2
=>1<A<2
=> A ko phải là số nguyên(đpcm)
\(\frac{n+3}{2n-2}\) có giá trị nguyên
\(\Leftrightarrow n+3⋮2n-2\)
\(\Rightarrow2\left(n+3\right)⋮2n-2\)
\(\Rightarrow2n+6⋮2n-2\)
\(\Rightarrow2n-2+8⋮2n-2\)
\(2n-2⋮2n-2\)
\(\Rightarrow8⋮2n-2\)
\(\Rightarrow2n-2\inƯ\left(8\right)\)
\(\Rightarrow2n-2\in\left\{1;2;4;8\right\}\)
\(\Rightarrow2n\in\left\{3;4;6;10\right\}\)
\(\Rightarrow n\in\left\{1,5;2;3;5\right\}\) ; mà n thuộc N
\(\Rightarrow n\in\left\{2;3;5\right\}\)
a) Để \(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)là số nguyên .
=> \(\frac{5}{3n+2}\)là 1 số nguyên
=> 5 chia hết cho 3n+2 .
=> 3n+2 thuộc Ư(5)=\(\left\{\pm1;\pm5\right\}\)
Từ đó, ta lập bảng ( khúc này bn tự làm)
Vậy...
b) Để \(\frac{5}{3n+2}\)đạt giá trị lớn nhất:
=> 3n+2 đạt giá trị tự nhiên nhỏ nhất
=> 3n đạt giá trị tự nhiên nhỏ nhất
=> n là số tự nhiên nhỏ nhấ
<=> n = 0
\(P=\dfrac{2n+1}{n-5}=\dfrac{2n-10+11}{n-5}=\dfrac{2\left(n-5\right)+11}{n-5}=2+\dfrac{11}{n-5}\)
\(P\in Z\Rightarrow\dfrac{11}{n-5}\in Z\)
\(\Rightarrow n-5=Ư\left(11\right)\)
\(\Rightarrow n-5=\left\{-11;-1;1;11\right\}\)
\(\Rightarrow n=\left\{-6;4;6;16\right\}\)