K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~ 

20 tháng 3 2021

n có giá trị nhỏ nhất khi và chỉ khi 3n+2 có giá trj lớn nhất cứ theo thé mà làm bài

20 tháng 3 2021

Ta có: \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)

Để \(A_{min}\)\(\Rightarrow\)\(2+\frac{5}{3n+2}min\)mà \(\hept{\begin{cases}2>0\\5>0\\n\inℤ\end{cases}}\)

\(\Rightarrow\)\(3n+2\)lớn nhất nhưng nguyên âm

\(\Rightarrow\)\(3n+2=-1\)\(\Leftrightarrow\)\(n=-1\)\(\left(TM\right)\)

Vậy để \(A_{min}\)\(\Leftrightarrow\)\(n=-1\)

DD
6 tháng 7 2021

a) \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\inℤ\)mà \(n\inℤ\)nên \(3n+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)

mà \(n\inℤ\)suy ra \(n\in\left\{-1,1\right\}\).

b) \(A=2-\frac{5}{3n+2}\)có giá trị nhỏ nhất suy ra \(\frac{5}{3n+2}\)có giá trị lớn nhất suy ra \(3n+2\)có giá trị dương nhỏ nhất mà \(n\inℤ\)nên \(3n+2\)dương nhỏ nhất bằng \(2\)tại \(n=0\).

\(minA=2-\frac{5}{2}=-0,5\).

11 tháng 8 2016

mk giải câu a thui nha

để \(\frac{6n-1}{3n+2}\)là số nguyên thì:

    (6n-1) sẽ phải chia hết cho(3n+2)

mà (3n+2) chja hết cho (3n+2)

=> 2(3n+2) cx sẽ chia hết cho (3n+2)

<=> (6n+4) chia hết cho (3n+2)

mà (6n-1) chia hết cho (3n+2)

=> [(6n+4)-(6n-1)] chja hết cho (3n+2)

      (6n+4-6n+1) chja hết cho 3n+2

           5 chia hết cho3n+2

=> 3n+2 \(\in\){1,5,-1,-5}

ta có bảng

3n+2

1   

-1-5

3n 

371-3
n1  

-1

vậy....
 

22 tháng 3 2016

bạn có thể giải thích ra được không !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

14 tháng 3 2017

M=(6n+4-5):(3n+2)=2-5:(3n+2)

a) để M nguyên thì (3n+2) phải là ước của 5

=> 3n+2={-5; -1; 1; 5}

+/ 3n+2=-5 => n=-7/3 (loại)

+/ 3n+2=-1 => n=-1; M=7

+/ 3n+2=1 => n=-1/3 loại

+/ 3n+2=5 => n=1; M=-3

Đs: n={-1; 1}

b) để M đạt nhỏ nhất thì 5:(3n+2) là lớn nhất, hay 3n+2 đạt giá trị nhỏ nhất => n=0

M​​min=2-5/2=-1/2

19 tháng 3 2016

để  m có giá trị nguyên thì

6n-1/3n+2

6n-1-6n-4/3n+2

-5/3n+2

3n+2c[1;5;-1;-5]

3n{-1;3;-3;-7}

nếu 3n=-1\(\Rightarrow\)không tìm được n thỏa mãn

nếu..................n=1

nếu..................n=-1

nếu..................không tìm được n thỏa mãn

10 tháng 5 2015

Ta có: \(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\). Để A có giá trị nhỏ nhất (n thuộc N) thì \(\frac{5}{3n+2}\) đạt giá trị lớn nhất.

-> 3n+2 đạt giá trị tự nhiên nhỏ nhất

-> 3n đạt giá trị tự nhiên nhỏ nhất

-> n là số tự nhiên nhỏ nhất

-> n = 0

19 tháng 3 2016

theo mình thì đúng rùi