K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2017

a/ \(A=\dfrac{m^3+3m^2+2m+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(A=\dfrac{m^3+2m^2+m^2+2m+5}{m\left(m+1\right)\left(m+2+6\right)}\)

\(A=\dfrac{m^2.\left(m+2\right)+m.\left(m+2\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(A=\dfrac{\left(m+2\right).\left(m^2+m\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(A=\dfrac{\left(m+2\right).m.\left(m+1\right)+5}{m\left(m+1\right)\left(m+2\right)+6}\)

\(\Rightarrow A=\dfrac{a}{a+1}\)

Gọi c là ƯCLN(a;a+1)(c \(\in\) N* )

\(\Rightarrow\left\{{}\begin{matrix}a⋮c\\a+1⋮c\end{matrix}\right.\Rightarrow}\left(a+1\right)-a⋮c\)

Suy ra 1 chia hết cho c

Mà c \(\in\) N* \(\Rightarrow\) c = 1

\(\Rightarrow UCLN\left(a;a+1\right)=1\)

\(\Rightarrow\) A là phân số tối giản (dpcm)

b/ Ta có: \(m.\left(m+1\right).\left(m+2\right)\) là tích 3 số nguyên liên tiếp nên suy ra \(m.\left(m+1\right)\left(m+2\right)⋮3\)

\(5⋮̸3;6⋮̸3\)

\(\Rightarrow\left\{{}\begin{matrix}\left(m+2\right).m.\left(m+1\right)+5⋮̸3\\m\left(m+1\right)\left(m+2\right)+6⋮̸3\end{matrix}\right.\)

Vì vậy, khi tối giản, phân số A vẫn có tử chia hết cho 3; ko bằng 2; 5 nên phân số A viết được dưới dạng số thập phân vô hạn tuần hoàn