Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: A=1.2.3.....99.100.(\(1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{99}+\dfrac{1}{100}\))
\(=1.2.3...100\left[\left(1+\dfrac{1}{100}\right)+\left(\dfrac{1}{2}+\dfrac{1}{99}\right)+......+\left(\dfrac{1}{50}+\dfrac{1}{51}\right)\right]\)
=>A= 1.2...100.\(\left[\dfrac{101}{100}+\dfrac{101}{2.99}+......+\dfrac{101}{50.51}\right]\)
=1.2.....100.101\(\left[\dfrac{1}{100}+\dfrac{1}{2.99}+.....+\dfrac{1}{50.51}\right]⋮101\)
Vậy A chia hết cho 101
Cậu search mạng chứ gì
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
Bài 1. Gọi 3 số nguyên liên tiếp là a-1; a; a+1 (a thuộc Z)
Theo bài ra: a - 1 + a + a + 1 là số lẻ hay 3a là số lẻ
=> a - 1 và a + 1 là số chẵn. Trong hai số chẵn liên tiếp, tồn tại một số chia hết cho 4, số còn lại chia hết cho 2. Do đó (a - 1)(a + 1) chia hết cho 8.
Trong ba số nguyên liên tiếp, luôn tồn tại một số chia hết cho 3. Vì vậy tích (a-1)a(a+1) chia hết cho 3.
Mà (a - 1)(a + 1) chia hết cho 8 nên tích (a - 1)a(a + 1) chia hết cho 24.
Vậy đccm.
Bài 2. Ta có: ab + cd + ad + bc = (ab + ad) + (bc + cd) = a(b + d) + c(b + d) = (a + c)(b + d).
Do đó ab + cd + ad + bc chia hết cho a + c với a khác -c.
Bài 3.a) x có 100 số hạng, chia thành 25 nhóm, mỗi nhóm 4 số, ta có:
x = (1 - 3 + 3^2 - 3^3) + (3^4 - 3^5 + 3^6 - 3^7) + ... + (3^96 - 3^97 + 3^98 - 3^99)
= (1 - 3 + 3^2 - 3^3) + (3^4)(1 - 3 + 3^2 - 3^3) + ... + 3^96(1 - 3 + 3^2 - 3^3)
= (1 - 3 + 3^2 - 3^3)(1 + 3^4 + ... + 3^96)
= -20(1 + 3^4 + ... + 3^96) chia hết cho 20.
Vậy x chia hết cho 20 (đccm)
b, Ta có: x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99
=> 3x = 3 - 3^2 + 3^3 - 3^4 + ... + 3^99 - 3^100
=> 3x + x = 1 - 3^100
=> 4x = (1 - 3^100)
=> x = (1 - 3^100)/4
c, Vì x = (1 - 3^100)/4 mà x = 1 - 3 + 3^2 - 3^3 + ... + 3^98 - 3^99 là số nguyên
nên (1 - 3^100)/ 4 là số nguyên => 1 - 3^100 chia hết cho 4
=> 1 đồng dư với 3^100 theo môđun 4 hay 3^100 chia 4 dư 1(đccm)
Bài 4. Ta có: a^2 , b^2 và c^2 là các số chính phương nên a^2, b^2 và c^2 chia 3 dư 0 hoặc 1.
Nếu trong 3 số a^2, b^2 và c^2 không có số nào chia hết cho 3 thì mỗi số đó đều chia 3 dư 1.
Do đó tổng a^2 + b^2 + c^2 phải chia hết cho 3. Điều này trái với đầu bài vì a^2 + b^2 + c^2 = 2051, là số chia 3 dư 2.
Điều này có nghĩa: trong ba số a^2, b^2, c^2 có một số chia hết cho 3. Mà 3 là số nguyên tố nên trog ba số a, b, c có một số chia hết cho 3 => abc chia hết cho 3
Tính biểu thức 1/1+1/2+1/3+...+1/98 bằng cách ghép thành từng cặp các phân số cách đều 2 phân số đầu và cuối
ta được :
( 1/1+1/98)+( 1/2+1/97 ) + ...+ ( 1/49+1/50 )
= 99/1.98+99/2.97+...+99/49.50
gọi các thừa số phụ là k1, k2, k3, ..., k49 thì
A = 99.(k1+k2+k3+...+k49)/99.(k1+k2+...+k49) x 2.3.4....97.98
= 99.(k1+k2+...+k49)
=> A chia hết cho 49 (1)
b)
Cộng 96 p/s theo từng cặp :
a/b = ( 1/1+1/96)+(1/2+1/95)+(1/3+1/94)+...+(1/48+1/49)
.................................................. ( làm tiếp nhé )
mỏi woa
Ta thấy
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
\(A=2.3.4...98+3.4.5....98+2.4.5....98+...+2.3.4....97\)(phá ngoặc)
=> A là số dương
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{98}\right)2.3.4....98\)
Trong 2.3.4.....98 có 11.9 = 99 nên A chia hết cho 99
b) Khi quy đồng mẫu lên tính B thì b là tích từ 2 đến 96(mẫu số chung)
Ta sẽ có:
B = \(\frac{a}{2.3.....96}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{96}\)
=>\(a=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{96}\right)2.3.4....96\)
Bạn CMTT như câu a là cũng ra
Chúc bạn học tốt
Bài 1:
=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2
=101^2-(1+2+3+...+99+100)
=101^2-100*101/2=5151
Chứng mình rằng stn A chia hết cho 101 với A = 1.2.3...99.100. ( 1+ 1/2 + 1/3 + ....+ 1/99 + 1/100 )
A=1•2•3•...•100
(1+1/100)+(1/2+1/99)+(1/3+1/98)+...+(1/50+1/51)
=1•2•3•100
=(101/100+101/2*99+101/3*98+...+101/50*51)
=1•2•3...100
(101/100+101/2*99+101/3*98+...+1/50*51)
Vì 101:101 => A :101
Nhớ k cho mình nha
1)Ta thấy nếu số đó công với 4 thì chia hết cho cả 3 số
Gọi số phải tìm là A
Ta có A + 4 chia hết cho 5 , 7 , 9
Mà A nhỏ nhất nên A + 4 = 5 . 7 . 9 = 315
Do đó A = 315 - 4 = 311
2)a)Ta có S = 2^1 + 2^2 +2^3 +...+ 2^100
S = ( 2^1 + 2^2 + 2^3 +2^4 ) +...+( 2^97 + 2^98 + 2^99 + 2^100 )
S = 1( 2^1 + 2^2 + 2^3 + 2^4 ) +...+ 2^96( 2^1 + 2^2 + 2^3 + 2^4 )
S = 1.30 +...+2^96.30
S = ( 1 +...+2^96 )30
Vì 30 chia hết cho 15 nên ( 1 +...+2^96 )30 chia hết cho 15
Hay S chia hết cho 15
b) Vì S cha hết cho 30 nên S chia hết cho 10
Suy ra S có tận cùng là 0
c) S = 2^1 + 2^2 + 2^3 +...+2^100
2S = 2^2 + 2^3 + 2^4 +...+ 2^101
2S - S =( 2^2 + 2^3 +...+ 2^101 ) - ( 2^1 + 2^2 + ... + 2^100 )
S = 2^101 - 2^1
S = 2^101 - 2
1. 158
2a. 0 ( doan nha )
b.S = ( 2 + 2^2 +2^3+2^4) + ( 2^5 + 2^6 + 2^7 + 2^8 ) +...+ ( 2^97 + 2^ 98 + 2^99 +2^100 )
= 2.( 1+2+2^2+2^3 ) + 2^5. ( 1+2+2^2+2^3)+2^97.( 1+2+2^2+2^3)
= 2.15+2^5.15+...+2^97.15
= 15.(2+2^5+...+2^97) chia het 15
c.2^101-2^1
3. chiu !
a/b=1+1/2+1/3+...+1/99+1/100
\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{99}+\frac{1}{100}\)
\(\frac{a}{b}=\frac{59400+29700+19800+600+594}{59400}\)
\(\frac{a}{b}=\frac{110094}{59400}\)
\(\frac{a}{b}=\frac{18349}{9900}\)
\(\Rightarrow a=18349\)
Mà \(18349:101=181dư68\)
Vậy đề sai