Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: x khác -3
Ta có: \(A=\frac{x+5}{x+3}=1+\frac{2}{x+3}\)
a) Để A là phân số => 2/(x+3) không nguyên => x + 3 không phải là ước số của 2.
2 có các ước: +-1; +-2
* \(x+3\ne1\Rightarrow x\ne-2\)
*\(x+3\ne-1\Rightarrow x\ne-4\)
*\(x+3\ne2\Rightarrow x\ne-1\)
* \(x+3\ne-2\Rightarrow x\ne-5\)
b) Để A là số nguyên => 2/(x+3) nguyên=> (x+3) là ước của 2. Tương tự trên => x =-5; -4; -2; -1
a) Để A và n thuộc Z => n+1 chia hết cho n-2
A=(n-2+3) chia hết cho n-2
=> 3 chia hết cho n-2
lập bảng=> n thuộc {3,1,5,9,(-1)}
b) A lớn nhất khi n-2 nhỏ nhất=> n-2=1
=> n=3
Nhớ tk cho mk nha!
a) để B là phân số
=> 2x-1\(\ne\)0
=>2x\(\ne\)1
=>x\(\ne\)\(\frac{1}{2}\)
b) sửa đề :Tìm x để B có giá trị là 1 số nguyên
để B nguyên => x\(\in\)Z
=> 2x+5\(⋮\)2x-1
ta có : 2x-1\(⋮\)2x-1
=>(2x-5)-(2x-1)\(⋮\)2x-1
=>-4\(⋮\)2x-1
=>2x-1\(\in\)Ư(-4)={\(\pm1;\pm2;\pm4\)}
ta có bảng :
2x-1 | 1 | -1 | 2 | -2 | 4 | -4 |
x | 1 | 0 | \(\frac{3}{2}\) | \(\frac{-1}{2}\) | \(\frac{3}{2}\) | \(\frac{-3}{2}\) |
Mà x \(\in Z\)
nên x\(\in\){1;0}
1: Để A nguyên thì x+3-4 chia hết cho x+3
=>\(x+3\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{-2;-4;-1;-5;1;-7\right\}\)
2: Để B nguyên thì 2x+4-9 chia hết cho x+2
=>\(x+2\in\left\{1;-1;3;-3;9;-9\right\}\)
=>\(x\in\left\{-1;-3;1;-5;7;-11\right\}\)
a: =>x(y+1)+y+1=11
=>(x+1)(y+1)=11
=>(x+1;y+1) thuộc {(1;11); (11;1); (-1;-11); (-11;-1)}
=>(x,y) thuộc {(0;10); (10;0); (-2;-12); (-12;-2)}
b: y là số nguyên
=>5x-3 chia hết cho 2x+4
=>10x-6 chia hết cho 2x+4
=>10x+20-26 chia hết cho 2x+4
=>-26 chia hết cho 2x+4
mà x nguyên
nên 2x+4 thuộc {2;-2;26;-26}
=>x thuộc {-1;-3;11;-15}
- Ta có: \(\frac{2x+3}{x+1}=\frac{\left(2x+2\right)+1}{x+1}=\frac{2.\left(x+1\right)+1}{x+1}\)( ĐKXĐ: \(x\ne-1\))
- Để \(a\inℤ\)\(\Leftrightarrow\)\(\frac{2x+3}{x+1}\inℤ\)\(\Leftrightarrow\)\(\frac{2.\left(x+1\right)+1}{x+1}\inℤ\)
- Để \(\frac{2.\left(x+1\right)+1}{x+1}\inℤ\)\(\Leftrightarrow\)\(2.\left(x+1\right)+1⋮x+1\)mà \(2.\left(x+1\right)⋮x+1\)
\(\Rightarrow\)\(1⋮x+1\)\(\Rightarrow\)\(x+1\inƯ\left(1\right)\in\left\{\pm1\right\}\)
+ Với \(x+1=1\) + Với \(x+1=-1\)
\(\Leftrightarrow x=0\left(TM\right)\) \(\Leftrightarrow x=-2\)
Vậy \(x\in\left\{-2,0\right\}\)