K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

\(P=\dfrac{2\sqrt{x}}{\sqrt{x}+3}\left(x\ge0\right)\)

để P>\(\dfrac{1}{4}< =>\dfrac{2\sqrt{x}}{\sqrt{x}+3}>\dfrac{1}{4} < =>\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{1}{4}>0\)

<=>\(\dfrac{4.2\sqrt{x}}{4\left(\sqrt{x}+3\right)}-\dfrac{\sqrt{x}+3}{4\left(\sqrt{x}+3\right)}>0\)

<=>\(\dfrac{8\sqrt{x}-\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0< =>\dfrac{7\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0\)

ta có \(\sqrt{x}\ge0\left(\forall x\right)=>\sqrt{x}+3\ge3=>4\left(\sqrt{x}+3\right)>12\)

hay \(4\left(\sqrt{x}+3\right)>0\)

vậy để \(\dfrac{7\sqrt{x}-3}{4\left(\sqrt{x}+3\right)}>0< =>7\sqrt{x}-3>0< =>7\sqrt{x}>3< =>\sqrt{x}>\dfrac{3}{7}\)

<=>\(x>\dfrac{9}{49}\)

vậy x>9/49 thì pP>1/4

13 tháng 3 2021

a)\(\sqrt{3x+1}+2x=\sqrt{x-4}-5\left(ĐKXĐ:x\ge4\right)\)

\(\Leftrightarrow\left(\sqrt{3x+1}-\sqrt{x-4}\right)+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{3x+1-x+4}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\frac{2x+5}{\sqrt{3x+1}+\sqrt{x-4}}+\left(2x+5\right)=0\)

\(\Leftrightarrow\left(2x+5\right)\left(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1\right)=0\)

13 tháng 3 2021

a') (tiếp)

\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2,5\left(KTMĐKXĐ\right)\\\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\end{cases}}\)

Xét phương trình \(\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1=0\)(1)

Với mọi \(x\ge4\), ta có:

\(\sqrt{3x+1}>0\)\(\sqrt{x-4}\ge0\)

\(\Rightarrow\sqrt{3x+1}+\sqrt{x-4}>0\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}>0\)

\(\Rightarrow\frac{1}{\sqrt{3x+1}+\sqrt{x-4}}+1>0\)

Do đó phương trình (1) vô nghiệm.

Vậy phương trình đã cho vô nghiệm.

5 tháng 6 2018

Bởi vì \(\sqrt{2x+1}\ge0\)mà \(x>\sqrt{2x+1}\)nên phải có điều kiện \(x>0\)

18 tháng 3 2021

a, Với \(x>0;x\ne4;x\ne9\)

\(A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)

\(=\left(\frac{4\sqrt{x}\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\left(\frac{8\sqrt{x}-4x+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{3-\sqrt{x}}{\sqrt{x}\left(2-\sqrt{x}\right)}=\frac{4\sqrt{x}}{2-\sqrt{x}}.\frac{\sqrt{x}\left(2-\sqrt{x}\right)}{3-\sqrt{x}}=\frac{4x}{3-\sqrt{x}}\)

b, Ta có : A = -2 hay 

\(\frac{4x}{3-\sqrt{x}}=-2\Rightarrow4x=-6+2\sqrt{x}\)

\(\Leftrightarrow4x+6-2\sqrt{x}=0\Leftrightarrow2\left(2x+3-\sqrt{x}\right)=0\)

\(\Leftrightarrow2x+3-\sqrt{x}=0\Leftrightarrow\sqrt{x}=2x+3\)

bình phương 2 vế ta có : 

\(x=\left(2x+3\right)^2=4x^2+12x+9\)

\(\Leftrightarrow-4x^2-11x-9=0\)giải delta ta thu được : \(x=-\frac{11\pm\sqrt{23}i}{8}\)

\(a,A=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{4-x}\right):\left(\frac{\sqrt{x}-1}{x-2\sqrt{x}}-\frac{2}{\sqrt{x}}\right)\)              

\(=\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)

\(=\frac{4\sqrt{x}.\left(2-\sqrt{x}\right)+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}:\frac{\sqrt{x}-1-2.\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(=\frac{8\sqrt{x}-4x+8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}-1-2\sqrt{x}+4}\)

\(=\frac{\left(4x+8\sqrt{x}\right)\left(\sqrt{x}\right)\left(\sqrt{x}-2\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{-4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}\right)\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)\left(-\sqrt{x}+3\right)}\)

\(=\frac{4x}{\sqrt{x}-3}\)

6 tháng 10 2018

cho mình sửa lại đề câu 1 với

(\(\dfrac{2x-\sqrt{x}+2}{x-4}+\dfrac{1}{\sqrt{x+2}}\)) =\(\dfrac{\sqrt{x}}{\sqrt{x}-2}\)

Bài 2: 

a: \(B=\dfrac{x+3+\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)

b: \(x=5-\sqrt{2}-4-\sqrt{2}=1\)

Khi x=1 thì \(B=\dfrac{1+1}{1+3}=\dfrac{2}{5}\)

c: \(B-\dfrac{1}{3}=\dfrac{\sqrt{x}+1}{\sqrt{x}+3}-\dfrac{1}{3}=\dfrac{3\sqrt{x}+3-\sqrt{x}-3}{3\left(\sqrt{x}+3\right)}>0\)

=>B>1/3

1 tháng 1 2018

ĐKXĐ: \(x\ne-1\)
\(\frac{1}{\sqrt{x^2+3}}+\frac{1}{\sqrt{1+3x^2}}=\frac{2}{x+1}\)
\(\Leftrightarrow\frac{x+1}{\sqrt{x^2+3}}-1+\frac{x+1}{\sqrt{3x^2+1}}-1=0\)
\(\Leftrightarrow\frac{x+1-\sqrt{x^2+3}}{\sqrt{x^2+3}}+\frac{x+1-\sqrt{3x^2+1}}{\sqrt{3x^2+1}}=0\)
\(\Leftrightarrow\frac{x^2+2x+1-x^2-3}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}+\frac{x^2+2x+1-3x^2-1}{\sqrt{3x^2+1}\left(x+1+\sqrt{3x^2+1}\right)}=0\)
\(\Leftrightarrow\frac{2\left(x-1\right)}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}+\frac{-2x\left(x-1\right)}{\sqrt{3x^2+1}\left(x+1+\sqrt{3x^2+1}\right)}=0\)
\(\Leftrightarrow2\left(x-1\right)\left(\frac{1}{\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)}-\frac{1}{\sqrt{\frac{1}{x^2}+3}\left(\frac{1}{x}+1+\sqrt{\frac{1}{x^2}+3}\right)}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\\sqrt{x^2+3}\left(x+1+\sqrt{x^2+3}\right)=\sqrt{\frac{1}{x^2}+3}\left(\frac{1}{x}+1+\sqrt{\frac{1}{x^2}+3}\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2=\frac{1}{x^2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(tmđkxđ\right)\\x=-1\left(ktmđkxđ\right)\end{cases}\Rightarrow}x=1}\)
Vậy nghiệm của pt trên là x=1

1 tháng 1 2018

Xét tử:
\(2\sqrt{1-3x}+\sqrt[3]{x+9}-2=2\left(\sqrt{1-3x}+\frac{3x-5}{4}\right)+\left(\sqrt[3]{x+9}-\frac{-3x+1}{2}\right)\)
\(=2.\frac{1-3x-\frac{9x+25-30x}{16}}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{x+9-\left(\frac{-3x+1}{2}\right)^3}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{x+9}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}\)
\(=\frac{-18\left(x+1\right)^2}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{\frac{\left(x+1\right)\left(27x^2-54x+71\right)}{8}}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{x+9}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}\)
Xét mẫu : x2-2x-3=(x+1)(x-3)
\(\Rightarrow A=\frac{\frac{-18\left(x+1\right)}{\sqrt{1-3x}-\frac{3x-5}{4}}+\frac{\frac{27x^2-54x+71}{8}}{\sqrt[3]{\left(x+9\right)^2}+\sqrt[3]{\left(x+9\right)}.\frac{-3x+1}{2}+\left(\frac{-3x+1}{2}\right)^2}}{x-3}\)
\(lim_{x\rightarrow-1}A=\frac{19}{48}\)
Gõ nhờ tý nhé, ko phải đáp án đâu
 

17 tháng 7 2021

\(D=\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{x-2+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{x+2\sqrt{x}-\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

\(D=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(E=\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1+\frac{x-\sqrt{x}}{1-\sqrt{x}}\right)=\left(1+\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\left(1-\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right)\)

\(E=\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)

18 tháng 7 2021

ĐK : a >= 0 , a khác 1

\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}-\frac{\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\right]\div\frac{\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\)

\(=\frac{a+\sqrt{a}-\sqrt{a}}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}\times\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}+1}=\frac{a}{\sqrt{a}+1}\)

19 tháng 9 2016

nhập PT vào máy tính, sử dụng dầu "=" ô nút CALC.

sau khi nhập xong, nhấn SHIFT,CALC, rồi nhấn dấu =

Ta được x=-1,322875656