Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay y = 5 vào phương trình đường thẳng d ta được 5 = 3 – 2x ⇔ x = −1
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (−1; 5)
Thay x = −1; y = 5 vào hàm số y = (m – 1)x2 ta được:
(m – 1). (−1)2 = 5 ⇔ m – 1 = 5 ⇔ m = 6
Vậy m = 6 là giá trị cần tìm
Đáp án cần chọn là: C
b: Thay m=2 vào (d), ta được:
y=2x-2+1=2x-1
Phương trình hoành độ giao điểm là:
\(x^2=2x-1\)
=>\(x^2-2x+1=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
Thay x=1 vào (P), ta được:
\(y=1^2=1\)
Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)
b: Phương trình hoành độ giao điểm là:
\(x^2=2x-m+1\)
=>\(x^2-2x+m-1=0\)
\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)
=4-4m+4
=-4m+8
Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0
=>-4m+8>0
=>-4m>-8
=>m<2
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)
y1,y2 thỏa mãn gì vậy bạn?
a: Thay x=0 và y=-5 vào (d), ta được:
2(m+1)*0-m^2-4=-5
=>m^2+4=5
=>m=1 hoặc m=-1
b:
PTHĐGĐ là;
x^2-2(m+1)x+m^2+4=0
Δ=(2m+2)^2-4(m^2+4)
=4m^2+8m+4-4m^2-16=8m-12
Để PT có hai nghiệm phân biệt thì 8m-12>0
=>m>3/2
x1+x2=2m+2; x1x2=m^2+4
(2x1-1)(x2^2-2m*x2+m^2+3)=21
=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21
=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21
=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21
=>(2x1-1)(2x2-1)=21
=>4x1x2-2(x1+x2)+1=21
=>4(m^2+4)-2(2m+2)+1=21
=>4m^2+16-4m-4-20=0
=>4m^2-4m-8=0
=>(m-2)(m+1)=0
=>m=2(nhận) hoặc m=-1(loại)
Thay y = 1 vào phương trình đường thẳng d ta được 3x – 5 = 1 ⇔ x = 2
Nên tọa độ giao điểm của đường thẳng d và parabol (P) là (2; 1)
Thay x = 2; y = 1 vào hàm số y = 3 m + 4 − 7 4 x22
ta được: 3 m + 4 − 7 4 .2 2 = 1 ⇔ 3 m + 4 − 7 4 = 1 4
⇔ 3 m + 4 = 2 ⇔ 3m + 4 = 4
⇔ 3m = 0 ⇔ m = 0 ⇒ (P): y = 1 4 x 2
Xét phương trình hoành độ giao điểm của d và (P):
1 4 x 2 = 3 x − 5 ⇔ x2 – 12x + 20 = 0
⇔ (x – 2) (x – 10) = 0 ⇔ x = 2 x = 10
Vậy hoành độ giao điểm còn lại là x = 10
Đáp án cần chọn là: D
Vì đường thẳng (d) cắt Oy tại điểm có tung độ bằng 8
Nên m+3=8⇔ m=5
Theo pt hoành độ giao điểm của (d) và (P)
Ta có:\(x^2=2x+8\)
⇔\(x^2-2x-8=0\)
\(\Delta'=\left(-1\right)^2-\left(-8\right)=9\)
\(\sqrt{\Delta'}=\sqrt{9}=3>0\)
Vậy pt có 2 nghiệm pb
x1=\(\dfrac{1+3}{1}=4\)
x2=\(\dfrac{1-3}{1}=-2\)
Với x =4 thì y=x2=42=16
Với x =-2 thì y=x2=(-2)2=4
Vậy ......
ĐK: m > − 1 5
Thay y = 9 vào phương trình đường thẳng d ta được 9 = 5x + 4 ⇔ x = 1
nên tọa độ giao điểm của đường thẳng d và parabol (P) là (91; 9)
Thay x = 1; y = 9 vào hàm số y = 5 m + 1 .x2 ta được
5 m + 1 .1 2 = 9 ⇔ 5 m + 1 = 9
5m + 1 = 81 ⇔ 5m = 80 ⇔ m = 16 (TM)
Vậy m = 16 là giá trị cần tìm
Đáp án cần chọn là: D