Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+6x+1\ge10\)
\(\Rightarrow x^2+6x\ge9\)
\(\Rightarrow x\left(x+6\right)\ge9\)
\(x^2+6x+9\ge18\)
\(\Rightarrow\frac{x^2+6x+9}{18}\ge1\)
\(\Leftrightarrow\frac{1}{18}\left(x+3\right)^2\ge1\)
Theo bạn dưới nói đề sai thì có vẻ đúng đấy bạn
11=11
112=121
113=1331
114=14641
.....
1110=1....01
=>1110-1=1...01-1=1...00
=>1110-1 \(⋮\)100
1110-1 = (11-1)(119+118+...+11+1) = 10(119+118+...+11+1)
11x - 1 chia hết cho 10 với mọi x
⇒ 119+118+...+11+1 chia hết cho 10
⇒ 1110 - 1 chia hết cho 100
Lời giải:
Đặt \(x=2t+1\). Khi đó, \(q(x)=10^{6x+2}+10^{6t+4}+1\)
Ta thấy: \(10^6\equiv 1\pmod {91}\). Do đó:
\(\left\{\begin{matrix} 10^{6k}\equiv 1\pmod {91}\\ 10^{6t}\equiv 1\pmod {91}\end{matrix}\right.\)
\(\Rightarrow q(x)\equiv 10^2+10^4+1\equiv 10101\equiv 0\pmod {91}\)
Do đó, \(q(x)\vdots 91\) với \(x\in\mathbb{N}\) lẻ.
a) -x2 + 6x - 10
= -(x2 - 6x + 10)
= -(x2 - 6x + 9 + 1)
= -[(x - 3)2 + 1]
Ta có: (x - 3)2 + 1 > 0 với mọi x
=> -[(x - 3)2 + 1] < 0 với mọi x
b) -2x2 - 4x - 5
= -(2x2 + 4x + 5)
= -(2x2 + 4x + 2 + 3)
= -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3]
Ta có: (\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3 > 0 với mọi x
=> -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3] < 0 với mọi x
a) \(-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1< 0\forall x\)
b) \(-2x^2-4x-5=-2\left(x^2+2x+1\right)-3=-\left(x+1\right)^2-3< 0\forall x\)