Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x+10\)
\(=\left(x^2-6x+9\right)+1\)
\(=\left(x-3\right)^2+1>0\) mọi x
p/s: chúc bạn hk tốt
\(x^2-6x+10\)
\(=\left(x^2-6x+9\right)+1\)
\(=\left(x-3\right)+1>0\)
Code : Breacker
a) -x2 + 6x - 10
= -(x2 - 6x + 10)
= -(x2 - 6x + 9 + 1)
= -[(x - 3)2 + 1]
Ta có: (x - 3)2 + 1 > 0 với mọi x
=> -[(x - 3)2 + 1] < 0 với mọi x
b) -2x2 - 4x - 5
= -(2x2 + 4x + 5)
= -(2x2 + 4x + 2 + 3)
= -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3]
Ta có: (\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3 > 0 với mọi x
=> -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3] < 0 với mọi x
a) \(-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1< 0\forall x\)
b) \(-2x^2-4x-5=-2\left(x^2+2x+1\right)-3=-\left(x+1\right)^2-3< 0\forall x\)
a)Ta có:x2-6x+10=x2-2.3x+9+1
=(x-3)2+1
Vì (x-3)2\(\ge\)0
Suy ra:(x-3)2+1\(\ge\)1(đpcm)
a)x2-6x+10
=x2-6x+9+1
=(x-3)2+1>0 với mọi x
Đpcm
b)4x-x2-5<0
=-(x2+4x+5)
=-(x2+4x+4+1)
=-(x-2)2-1<0 với mọi x
Đpcm
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)
\(x^2+6x+1\ge10\)
\(\Rightarrow x^2+6x\ge9\)
\(\Rightarrow x\left(x+6\right)\ge9\)
\(x^2+6x+9\ge18\)
\(\Rightarrow\frac{x^2+6x+9}{18}\ge1\)
\(\Leftrightarrow\frac{1}{18}\left(x+3\right)^2\ge1\)
Theo bạn dưới nói đề sai thì có vẻ đúng đấy bạn
Bài 1
\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)
\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)
Bài 2
\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)
Lời giải:
Đặt \(x=2t+1\). Khi đó, \(q(x)=10^{6x+2}+10^{6t+4}+1\)
Ta thấy: \(10^6\equiv 1\pmod {91}\). Do đó:
\(\left\{\begin{matrix} 10^{6k}\equiv 1\pmod {91}\\ 10^{6t}\equiv 1\pmod {91}\end{matrix}\right.\)
\(\Rightarrow q(x)\equiv 10^2+10^4+1\equiv 10101\equiv 0\pmod {91}\)
Do đó, \(q(x)\vdots 91\) với \(x\in\mathbb{N}\) lẻ.