K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

\(x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)^2+1>0\)  mọi x

p/s: chúc bạn hk tốt

24 tháng 7 2018

\(x^2-6x+10\)

\(=\left(x^2-6x+9\right)+1\)

\(=\left(x-3\right)+1>0\)

Code : Breacker

10 tháng 6 2017

a) -x2 + 6x - 10
= -(x2 - 6x + 10)
= -(x2 - 6x + 9 + 1)
= -[(x - 3)2 + 1]

Ta có: (x - 3)2 + 1 > 0 với mọi x
=> -[(x - 3)2 + 1] < 0 với mọi x

b) -2x2 - 4x - 5
= -(2x2 + 4x + 5)
= -(2x2 + 4x + 2 + 3)
= -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3]
Ta có: (\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3 > 0 với mọi x
=>  -[(\(\sqrt{2x^2}\)+\(\sqrt{2}\))2 + 3] < 0 với mọi x

10 tháng 6 2017

a) \(-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1< 0\forall x\)

b)  \(-2x^2-4x-5=-2\left(x^2+2x+1\right)-3=-\left(x+1\right)^2-3< 0\forall x\)

1 tháng 9 2016

a)Ta có:x2-6x+10=x2-2.3x+9+1

                           =(x-3)2+1

         Vì (x-3)2\(\ge\)0

                Suy ra:(x-3)2+1\(\ge\)1(đpcm)

1 tháng 9 2016

a)x2-6x+10

=x2-6x+9+1

=(x-3)2+1>0 với mọi x

Đpcm

b)4x-x2-5<0

=-(x2+4x+5)

=-(x2+4x+4+1)

=-(x-2)2-1<0 với mọi x

Đpcm

15 tháng 11 2016

\(A=x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)

Vậy A > 0 với mọi x.

\(B=x^2-2xy+y^2+1\)

\(=\left(x-y\right)^2+1\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)

Vậy B > 0 với mọi x, y.

\(M=x^2-6x+12\)

\(=x^2-6x+9+3\)

\(=\left(x-3\right)^2+3\)

\(\left(x-3\right)^2\ge0\)

\(\Rightarrow\left(x-3\right)^2+3\ge3\)

\(MinB=3\Leftrightarrow x=3\)

\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)

\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)

\(2x^2+6x+5-2x^2+4x-2=7\)

\(10x=7+3\)

\(10x=10\)

\(x=1\)

\(x^2+x=0\)

\(x\left(x+1\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)

\(x^3-\frac{1}{4}x=0\)

\(x\left(x^2-\frac{1}{4}\right)=0\)

\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)

\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)

\(\left(x+10\right)^2-\left(x^2+2x\right)\)

\(=x^2+20x+100-x^2-2x\)

\(=18x+100\)

\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)

\(=x^2-4+x^3-1-x^3-x^2\)

\(=-5\)

15 tháng 11 2016

bài 1 áp dụng hdt là ra

bài 2 cũng z, nó tòi ra 1 số thì gtnn = cái số đó

bài 3

câu a phá hết ra

câu b nhóm hạng tử

câu a trương tự, trong ngoặc sẽ tạo ra 1 hđt

bài 4 câu a phá hết

câu b hằng đẳng thức

18 tháng 7 2018

sai đề ròi bạn ơi 

mik nghĩ vậy...

18 tháng 7 2018

\(x^2+6x+1\ge10\)

\(\Rightarrow x^2+6x\ge9\)

\(\Rightarrow x\left(x+6\right)\ge9\)

\(x^2+6x+9\ge18\)

\(\Rightarrow\frac{x^2+6x+9}{18}\ge1\)

\(\Leftrightarrow\frac{1}{18}\left(x+3\right)^2\ge1\)

Theo bạn dưới nói đề sai thì có vẻ đúng đấy bạn

30 tháng 6 2021

Bài 1

\(A=x^2-6x+15=x^2-2.3.x+9+6=\left(x-3\right)^2+6>0\forall x\)

\(B=4x^2+4x+7=\left(2x\right)^2+2.2.x+1+6=\left(2x+1\right)^2+6>0\forall x\)

Bài 2

\(A=-9x^2+6x-2021=-\left(9x^2-6x+2021\right)=-\left[\left(3x-1\right)^2+2020\right]=-\left(3x-1\right)^2-2020< 0\forall x\)

 

AH
Akai Haruma
Giáo viên
14 tháng 8 2017

Lời giải:

Đặt \(x=2t+1\). Khi đó, \(q(x)=10^{6x+2}+10^{6t+4}+1\)

Ta thấy: \(10^6\equiv 1\pmod {91}\). Do đó:

\(\left\{\begin{matrix} 10^{6k}\equiv 1\pmod {91}\\ 10^{6t}\equiv 1\pmod {91}\end{matrix}\right.\)

\(\Rightarrow q(x)\equiv 10^2+10^4+1\equiv 10101\equiv 0\pmod {91}\)

Do đó, \(q(x)\vdots 91\) với \(x\in\mathbb{N}\) lẻ.

14 tháng 8 2017

mod là gì vậy bn?