K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

Xét phương trình hoành độ giao điểm : \(mx^2=nx+4\)

Để hai đồ thị tiếp xúc tại điểm có hoanh độ bằng 2 thì pt trên có 1 nghiệm duy nhất x = 2.

\(mx^2=nx+4\Leftrightarrow mx^2-nx-4=0\)

\(\Delta=0\Leftrightarrow n^2+16m=0\)

Hơn nữa \(4m-2n-4=0\)

Kết hợp hai pt ta tìm được m = -1; n = -4.

29 tháng 6 2017

mình cần gấp. có bạn nào làm được ko

3 tháng 2 2021

1.

Đồ thị hàm số:

2. 

\(x=1\Rightarrow y=2\Rightarrow A\left(1;2\right)\)

\(x=2\Rightarrow y=8\Rightarrow B\left(2;8\right)\)

Phương trình đường thẳng AB:

\(6x-y-4=0\)

Vì \(\left(d\right)//\left(AB\right)\Rightarrow m=6\Rightarrow6x-y+n=0\left(AB\right)\)

Theo giả thiết \(\left(d\right)\) tiếp xúc với \(\left(P\right)\), phương trình hoành độ giao điểm:

\(6x+n=2x^2\)

\(\Leftrightarrow2x^2-6x-n=0\)

\(\Delta'=9+2n=0\Leftrightarrow n=-\dfrac{9}{2}\)

5 tháng 5 2023

a, Hoành độ giao điểm của d và P là:

x2 = 2mx -m +1 <=> x-2mx +m-1

đenta = 4m2-4.(m-1) = 4m2-4m+4 = (2m)2-2.2m +1 +3=(2m-1)2+3

=> đenta >= 3

Vậy không có giá trị m để P tiếp xúc với d

b,Áp dụng định lí Vi-ét:

\(\left\{{}\begin{matrix}x1+x2=2m\\x1.x2=m-1\end{matrix}\right.\)

Ta có: x12.x2 + mx2=x2

<=> x12.x2+mx2-x2=0 <=> x12.x2 + x2(m-1)=0

<=> x12.x2+x2(x1.x2)=0 <=>x12.x2+x22.x1=0

<=>x1.x2.(x1+x2)=0 <=> (m-1).2m=0

<=> \(\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)  

Vậy m \(\in\) \(\left\{1;0\right\}\)

21 tháng 11 2018

parabol (P): y =  x 2  ; đường thẳng (d): y = 2x + m (m là tham số).

a) phương trình hoành độ giao điểm của (P) và (d) là:

x 2  = 2x + m ⇔  x 2 - 2x - m = 0

Δ'= 1 + m

(d) tiếp xúc với (P) khi phương trình hoành độ giao điểm có duy nhất 1 nghiệm

⇔ Δ'= 1 + m = 0 ⇔ m = -1

Khi đó hoành độ giao điểm là x = 1