K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2015

* Xét: p \(\ne\)3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp

  \(\Rightarrow\)phải có 1 số chia hết cho 3.
8p -1 và 8p > 3 không chia hết cho 3
\(\Rightarrow\) 8p + 1 chia hết cho 3 và > 3
\(\Rightarrow\) 8p + 1 là hợp số

25 tháng 11 2016

+ Nếu p = 3 thì 8p+1 = 8.3.+1 = 25

- p khác 3 vì p là số nguyên tố

=) p có 2 dạng: 3k+1, 3k+2

- Với p = 3k+ 1 =) 8p + 1 =8 (3k+1 ) + 1

= (24k+9) chia hết cho 3

Vì 8p+1 >3 =) 8p+1 là hợp số

Với p = 3k+2 =) 8p-1 = 8(3k+2) -1

= (24k+ 15 )

= 3 (8k+2) chia hết cho 3

Mà 8p - 1 là số nguyên tố và 8p-1 > 3

=) vô lý

=) p = 3k+2 (loại)

Vậy 8p+ 1 là hợp số

 

25 tháng 11 2016

Số 8 nhân bất kì cho số nào cũng là một số chẵn

Vậy chắc chắn chia hết cho 2

5% là chia hết cho 4, 5 ,6, 8 ..mình cũng ko chả biết nhiều đâu

Ta có : 8p - 1 = số lẻ . Vậy : 8p : hết 2;4;5;6;8...

1 : hết 1

=> { 8p -1 } : hết cho chắc chắn là một số bất kì nào đó . VD :

8.5 -1 = 15 : 3 = 6 .

Vậy nên 8p - 1 là hợp số

20 tháng 10 2016

Xét p = 2 => 8p - 1 = 16 - 1 = 15 ( hợp số , loại )

Xét p = 3 => 8p - 1 = 24 - 1 = 23 ( số nguyên tố )

=> 8p + 1 = 24 + 1 = 25 ( hợp số )

Xét p > 3 , vì p là số nguyên tố => p có 2 dạng 3k + 1 và 3k + 2

- Với p = 3k + 1 => 8p - 1 = 8 . ( 3k + 1 ) - 1 = 8 . 3k + 8 - 1 = 3 . 8k + 7

=> 8p + 1 = 8 . ( 3k + 1 ) = 8 . 3k + 8 + 1 = 3 . 8k + 9 = 3k . ( 8k + 3 ) là hợp số

- Với p = 3k + 2 => 8p - 1 = 8 . ( 3k + 2 ) - 1 = 8 . 3k + 15 = 3 . ( 8k + 5 ) ( hợp số , loại )

Vậy với p là số nguyên tố thì 8p + 1 là hợp số

20 tháng 10 2016

Xét p = 2 => 8p - 1 = 16 - 1 = 15 ( hợp số , loại )

Xét p = 3 => 8p - 1 = 24 - 1 = 23 ( số nguyên tố )

=> 8p + 1 = 24 + 1 = 25 ( hợp số )

Xét p > 3 , vì p là số nguyên tố => p có 2 dạng 3k + 1 và 3k + 2

- Với p = 3k + 1 => 8p - 1 = 8 . ( 3k + 1 ) - 1 = 8 . 3k + 8 - 1 = 3 . 8k + 7

=> 8p + 1 = 8 . ( 3k + 1 ) = 8 . 3k + 8 + 1 = 3 . 8k + 9 = 3k . ( 8k + 3 ) là hợp số

- Với p = 3k + 2 => 8p - 1 = 8 . ( 3k + 2 ) - 1 = 8 . 3k + 15 = 3 . ( 8k + 5 ) ( hợp số , loại )

Vậy với p là số nguyên tố thì 8p + 1 là hợp số

25 tháng 11 2016

P ngyen to => \(p=\orbr{\begin{cases}3k+2\\3k+1\end{cases}}\)

\(8p-1=\orbr{\begin{cases}8.\left(3k+2\right)-1\\8.\left(3k+1\right)-1\end{cases}}\)

8.(3k+2)--1=24k+15 chia het cho 3=> p chi co the =3k+1 

8p+1=8.(3k+1)+1=24k+9=3(.8k+3) chia het cho 3 => 8p+1 la hop so

9 tháng 1 2016

Xét p khác 3

Thấy 8p-1,8p,8p+1 là 3 số nguyên liên tiếp

suy ra phải có 1 số chia hết cho 3

8p-1 và 8p>3 ko chia hết cho 3

suy ra 8p+1 chia hết cho 3 và >3

suy ra 8p+1 là hợp số

22 tháng 10 2017

Xét p = 2 => 8p - 1 = 16 - 1= 15 ( Là hợp số, loại )

Xét p = 3 => 8p - 1 = 24 - 1= 23 ( Là số nguyên tố, nhận )

=> 8p +1 = 25 ( Hợp số )

Xét p > 3 vì p là số nguyên tố => p có hai dạng p = 3k + 1 và 3k + 2

- Với 3k +1 => 8p - 1 = 8.(3k+1) - 1 = 8.3k + 8 - 1 = 8.3k +7

=> 8p + 1= 8.(3k + 1) +1 = 8.3k + 8 + 1 = 8.3k + 9= 3.(8k +3) ( Là hợp số)

- Với p = 3k +2 => 8p -1 = 8. ( 3k + 2) -1 = 8.3k + 16 - 1= 8.3k + 15= 3.(8k + 5) ( Là hợp số , loại)

Vậy, với p là số nguyên tố thì 8p + 1 là Hợp số.

K CHO MK NHA !

22 tháng 10 2017

gọi UCLN(p và 8p-1) là d

Ta có p chia hết cho d suy ra 16p chia hết cho d

      và 8p-1 chia hết cho d

suy ra 16p - (8p-1) chia hết cho d

suy ra 16p - 8p +1 chia hết cho d hay 8p +1 chia hết cho d

vạy 8p+1 chia hết cho 8p+1 ,1,d

nên 8p+1 là hợp số

24 tháng 11 2016

p=2 thì 8p-1 = 15 => loại

p=3 thì 8p-1=23 ; 8p+1=25 là hợp số => chọn

p>3 thì p không chia hết cho 3

p chia 3 dư 2 thì 8p-1 chia hết cho 3 nên loại

=> p chia 3 dư 1 => 8p+1 chia hết cho 3 ; là hợp số

4 tháng 11 2021

Nếu    \(p=2\Rightarrow8p-1=15\)   là hợp số \(\left(ktm\right)\)

Nếu    \(p=3\Rightarrow8p-1=23\)là số nguyên tố và \(8p+1=25\)là hợp số \(\left(tm\right)\)

Nếu   \(p>3\Rightarrow p=3k+1;p=3k+2\left(k\inℕ\right)\)

Với \(p=3k+1\left(k\inℕ\right)\Rightarrow8p+1=8\left(3k+1+1\right)=24k+9=3\left(8k+3\right)>3\)

và \(⋮3\)nên \(8p+1\)là hợp số

Với \(p=3k+2\left(k\inℕ\right)\Rightarrow8p-1=8\left(3k+2\right)-1=24k+15=3\left(8k+5\right)>3\)và \(⋮3\)nên \(8p-1\)là hợp số. ( Vô lí )

Vậy \(8p+1\)là hợp số khi \(8p-1\)và \(p\)là các số nguyên tố