Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(P=\frac{1.51}{50.2}\)
\(P=\frac{51}{100}>\frac{1}{2}\)
Kết luận: \(P>\frac{1}{2}\)
Ta có
\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)
\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)
=> A<-1/2
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)
A có: \(\frac{2014-2}{3-2}+1=2013\) ( thừa số )
Ta thấy mỗi thừa số của A đều có dạng \(\frac{1}{n^2}-1\)với \(n\inℕ^∗\)và \(n>1\)
Có \(\frac{1}{n^2}< 1\Rightarrow\frac{1}{n^2}-1< 1-1=0\)
=> Mỗi thừa số của A đều nhỏ hơn 0
=> A là tích của 2013 thừa số nhỏ hơn 0
Mà 2013 là số lẻ
=> A < 0
Mà B = \(\frac{1}{2}\)> 0
=> A < B
M=-(\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{1-100^2}{100^2}\))
=-(\(\frac{1.3}{2.2}.\frac{2.4}{3.3}\frac{3.5}{4.4}...\frac{99.100}{100.100}\))
=-(\(\frac{1.2.3...99}{2.3.4...100}.\frac{3.4.5...100}{2.3.4..100}\))
=-(\(\frac{1}{100}.\frac{1}{2}\))
=\(\frac{-1}{200}\)
Ta có: \(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\left(-\frac{1.3}{2.2}\right).\left(-\frac{2.4}{3.3}\right)...\left(-\frac{99.101}{100.100}\right)\)
\(=-\frac{1}{2}.\frac{101}{100}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
Vậy \(A< -\frac{1}{2}\)
\(A=\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)...\left(\frac{1}{10000}-1\right)\)
\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot\frac{-15}{16}\cdot...\cdot\frac{-9999}{10000}\)
\(=\frac{-1\cdot3}{2\cdot2}\cdot\frac{-2\cdot4}{3\cdot3}\cdot...\cdot\frac{-99\cdot111}{100.100}\)
\(=\frac{1\cdot3}{2\cdot2}\cdot\frac{2\cdot4}{3\cdot3}\cdot...\cdot\frac{99\cdot111}{100\cdot100}\)
\(=\frac{\left(1\cdot2\cdot3\cdot4\cdot...\cdot99\right)\cdot\left(3\cdot4\cdot5\cdot6\cdot...\cdot111\right)}{\left(1\cdot2\cdot3\cdot4\cdot...\cdot100\right)^2}\)
\(=\frac{101}{2\cdot100}\)
\(=\frac{101}{200}>\frac{1}{2}\)
\(A=-\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).....\left(1-\frac{1}{100^2}\right)\)
\(A=-\left(\frac{1.3}{2.2}\right).\left(\frac{2.4}{3.3}\right)....\left(\frac{99.101}{100.100}\right)\)
\(A=-\left(\frac{1.2....99}{2.3...100}\right).\left(\frac{3.4....101}{2.3....100}\right)\)
\(A=-\left(\frac{1}{100}\right).\left(\frac{101}{2}\right)\)
\(A=\frac{-101}{200}>\frac{-1}{2}\)
\(P=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(\Rightarrow P=\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{9}{9}-\frac{1}{9}\right)\left(\frac{16}{16}-\frac{1}{16}\right)...\left(\frac{2500}{2500}-\frac{1}{2500}\right)\)
\(\Rightarrow P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(\Rightarrow P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(\Rightarrow P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(\Rightarrow P=\frac{51}{50.2}=\frac{51}{100}>\frac{50}{100}=\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Ta có:
\(P=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{50^2}\right)\)
\(P=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).....\left(1-\frac{1}{2500}\right)\)
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{2499}{2500}\)
\(P=\frac{3.8.15.....2499}{4.9.16.....2500}\)
Tới chỗ này rồi tiếp tục rút gọn
Kết quả cuối cùng là: \(P>\frac{1}{2}\)
Xin lỗi nha, tớ ko có giỏi ở phần rút gọn.