Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
Ta thấy \(x^2+1\ge1>0\forall x\)
\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)
\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)
\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)
\(\ge1^4+9.1^4+20.1^2+0-30=0\)
\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)
Vậy A luôn không âm với mọi giá trị của biến.
a: \(A=\dfrac{3\left(1-2x\right)}{2x\left(x^2+1\right)-\left(x^2+1\right)}\)
\(=\dfrac{-3\left(2x-1\right)}{\left(x^2+1\right)\left(2x-1\right)}=\dfrac{-3}{x^2+1}\)
b: Khi x=3 thì \(A=\dfrac{-3}{3^2+1}=-\dfrac{3}{10}\)
c: x^2+1>=0
=>3/x^2+1>=0
=>-3/x^2+1<=0
=>A<=0(ĐPCM)
\(x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2-x+1\right)\)
\(x^4-x^3+2x^2-x+1=\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=\left(x^2-x+1\right)\left(x^2+1\right)\)
Ta có: \(\left(x+1\right)^2\ge0;\forall x\)
\(x^2+1>1\); \(\forall x\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0,\forall x\)
Vậy \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0;\forall x\)
a) \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
\(=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\frac{\left(x+1\right)\left(x^3+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
b) Xét tử ta có: \(\left(x+1\right)^2\ge0\) (1)
Xét mấu ta có: \(x^2\ge0\Rightarrow x^2+1\ge1>0\) (2)
Từ (1) và (2) \(\Rightarrow\) Phân thức trên k âm với mọi x
đk x khác -1
A=\(\frac{\left(x^3-x^2+x\right)+\left(3x^2-3\right)+\left(x+4\right)}{x^3+1}=\frac{\left(x^3+1\right)+2x^2+2x}{x^3+1}=1+\frac{2x}{x^2-x+1}=\frac{x^2+x+1}{x^2-x+1}\)
a) \(A=\frac{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}=\frac{\left(2x+1\right)^2+3}{\left(2x-1\right)^2+3}\) Gọn thế nào quan điểm của người chấm.
b) Tử & mẫu của A luôn lớn hơn 3 lên suy ra ta luôn dương
A = \(\frac{x}{x+1}\)\(-\)\(\frac{3-3x}{x^2-x+1}\)\(+\)\(\frac{x+4}{x^3+1}\)
= \(\frac{x\left(x^2-x+1\right)}{x^3+1}\)\(-\)\(\frac{3-3x\left(x+1\right)}{x^3+1}\)\(+\)\(\frac{x+4}{x^3+1}\)
= \(\frac{x\left(x^2-x+1\right)-\left(3x-3\right)\left(x+1\right)+\left(x+4\right)}{x^3+1}\)
đến đây cậu tự nhân phá ra rồi rút gọn nhé
Ta có: \(P=\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right)\left(x+1\right)}{x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)\left(x^2-x+1\right)\left(x+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
Vì \(\hept{\begin{cases}x^2+1\ge1>0\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\end{cases}}\)
Nên mẫu số luôn luôn khác 0
Do đó: \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
Vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\x^2+1>0\end{cases}\left(\forall x\right)}\) nên \(P\ge0\left(\forall x\right)\)
\(P=\frac{x^4+x^2+x+1}{x^4-x^2+2x^2-x+1}=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
Do \(\left(x^2+1\right)\left(x^2-x+1\right)\ne0\)do đó không cần điều kiện của x
Vậy \(P=\frac{\left(x+1\right)^2\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
\(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\x^2+1>0\forall x\end{cases}\Rightarrow P\ge0\forall x}\)