K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2020

a) theo tính chất của hai tiếp tuyến cắt nhau , ta có :

AM = MB

Mà OA = OB ( = R )

\(\Rightarrow\)OM thuộc đường trung trực của AB

\(\Rightarrow\)OM \(\perp\)AB

b) Áp dụng hệ thức lượng vào \(\Delta AOM\),ta có :

\(OE.OM=OA^2=R^2\) ( không đổi i)

c) gọi F là giao điểm của AB với OH

Xét \(\Delta OEF\)và \(\Delta OHM\)có :

\(\widehat{HOE}\left(chung\right)\)\(\widehat{OEF}=\widehat{OHM}\left(=90^o\right)\)

\(\Rightarrow\Delta OEF~\Delta OHM\left(g.g\right)\)

\(\Rightarrow\frac{OE}{OH}=\frac{OF}{OM}\Rightarrow OF.OH=OE.OM=R^2\Rightarrow OF=\frac{R^2}{OH}\)

Do đường thẳng d cho trước nên OH không đổi

\(\Rightarrow\)OF không đổi

Do đó đường thẳng AB luôn đi điểm F cố định

13 tháng 5 2020

Cho đường tròn tâm O có đường kính AB R2 . Gọi M là điểm di động trên đường tròn O . Điểm M khác AB, ; dựng đường tròn tâm M tiếp xúc với AB tại H . Từ A và B kẻ hai tiếp tuyến AC và BD với đường tròn tâm M vừa dựng. 

a) Chứng minh BM AM , lần lượt là các tia phân giác của các góc ABD và BAC .

b) Chứng minh ba điểm C M D , , nằm trên tiếp tuyến của đường tròn tâm O tại điểm M .

c) Chứng minh AC BD không đổi, từ đó tính tích AC BD. theo CD .

d) Giả sử ngoài AB, trên nửa đường tròn đường kính AB không chứa M có một điểm N cố định. gọi I là trung điểm của MN , kẻ IP vuông góc với MB . Khi M chuyển động thì P chuyển động trên đường cố định nào.

Cần giải câu d

8 tháng 5 2016

gọi K là giao của MO và AB => MK.MO=MA^2

mà MA^2=MC.MD( ko đổi)  và MO cos định => MK ko đổi,,,,mà M cố định,,,k thuộc MO cố định => K cố định =>..............

9 tháng 7 2017

a, Theo tính chất của hai tiếp tuyến cắt nhau chứng minh được OM là đường trung trực của AB, tức OM vuông góc AB. Áp đụng hệ thức lượng trong tam giác vuông OAM chứng minh được : OI. OM =  O A 2 = R 2

b, Chứng minh được: ∆OKI:∆OMH(g.g) => OK.OH = OI.OM

c, Để OAEB là hình thoi thì OA = EB. Khi đó, tam giác OAK đều, tức là  A O M ^ = 60 0 . Sử dụng tỉ số lượng giác của góc  A O M ^ , tính được OM=2OA=2R, tức là M cách O một khoảng 2R

d, Kết hợp ý a) và b) => OK.OH =  R 2 => OK = R 2 O H

Mà độ dài OH không đổi nên độ dài OK không đổi

Do đó, điểm K là điểm cố định mà AB luôn đi qua khi M thay đổi

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. Câu 4: (4,0 điểm)Cho đường tròn (O; R) và hai...
Đọc tiếp

Trên cùng một mặt phẳng tọa độ Oxy cho hai đường thẳng (d) và (D) lần lượt có phương trình là y=2x-5 và y= (m-2)x -m-1 (m là tham số).
a) Chứng minh rằng đường thẳng (D) luôn luôn đi qua một điểm cố định thuộc đường thẳng (d) với mọi giá trị của m∈R.
b) Tìm giá trị của m để gốc tọa độ O cách đường thẳng (D) một khoảng lớn nhất. 
Câu 4: (4,0 điểm)
Cho đường tròn (O; R) và hai đường kính phân biệt AB và CD sao cho tiếp tuyến tại A của đường tròn (O; R) cắt các đường thẳng BC và BD lần lượt tại hai điểm E và F. Gọi P và Q lần lượt là trung điểm của các đoạn thẳng AE và AF.
a) Chứng minh rằng trực tâm H của tam giác BPQ là trung điểm của đoạn thẳng OA.
b) Hai đường kính AB và CD có vị trí tương đối như thế nào thì tam giác BPQ có diện tích nhỏ nhất.
Câu 5: (2,0 điểm) Cho a, b, c là các độ dài ba cạnh của một tam giác và thỏa hệ thức a+b+c=1. Chứng minh rằng a2+b2+c2<12.

0