Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT hoành độ giao điểm:
$x^2-2mx-(2m+1)=0(*)$
Để (P) và (d) cắt nhau tại 2 điểm pb có hoành độ $x_1,x_2$ thì PT $(*)$ phải có 2 nghiệm pb $x_1,x_2$
$\Leftrightarrow \Delta'=m^2+2m+1>0\Leftrightarrow (m+1)^2>0$
$\Leftrightarrow m\neq -1$
Áp dụng định lý Viet: $x_1+x_2=2m; x_1x_2=-(2m+1)$
Khi đó:
$\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1$
$\Leftrightarrow \sqrt{2m}+\sqrt{3-2m-1}=2m+1$
\(\Leftrightarrow \left\{\begin{matrix}
0\leq m< 1\\
\sqrt{2m}+\sqrt{2(1-m)}=2m+1\end{matrix}\right.\)
Bình phương 2 vế dễ dàng giải ra $m=\frac{1}{2}$ (thỏa)
a: PTHĐGĐ là;
-1/4x^2-mx+m+2=0
=>1/4x^2+mx-m-2=0
=>x^2+4mx-4m-8=0
\(\text{Δ}=\left(4m\right)^2-4\left(-4m-8\right)\)
\(=16m^2+16m+32\)
\(=16m^2+2\cdot4m\cdot2+4+28=\left(4m+2\right)^2+28>0\)
=>Phương trình luôn có hai nghiệm phân biệt
b: \(A=x_1\cdot x_2\left(x_1+x_2\right)\)
\(=4m\left(4m+8\right)\)
\(=\left(16m^2+32m+16-16\right)\)
\(=\left(4m+4\right)^2-16>=-16\)
Dấu = xảy ra khi m=-1
Lời giải:
PT hoành độ giao điểm:
$x^2-(2mx-2m+1)=0$
$\Leftrightarrow x^2-2mx+(2m-1)=0(*)$
Theo định lý Viet:
$x_1+x_2=2m$
$x_1x_2=2m-1$
$\Rightarrow x_1x_2+1-x_1-x_2=0$
$\Leftrightarrow (x_1-1)(x_2-1)=0$
$\Rightarrow x_1=1$ hoặc $x_2=1$
Nếu $x_1=1$ thì $x_2=2m-x_1=2m-1$
Khi đó:
$x_1^2=x_2-4$
$\Leftrightarrow 1=2m-1-4$
$\Leftrightarrow m=3$ (tm)
Nếu $x_2=1$ thì $x_1=2m-x_2=2m-1$
Khi đó:
$x_1^2=x_2-4$
$\Leftrightarrow (2m-1)^2=1-4=-3<0$ (vô lý)
Vậy.........
PTHĐGĐ là:
x^2-(2m+1)x+2m=0
Δ=(2m+1)^2-4*2m
=4m^2+4m+1-8m=(2m-1)^2
Để (P) cắt (d) tại hai điểm phân biệt thì 2m-1<>0
=>m<>1/2
y1+y2-x1x2=1
=>(x1+x2)^2-3x1x2=1
=>(2m+1)^2-3*2m=1
=>4m^2+4m+1-6m-1=0
=>4m^2-2m=0
=>m=0 hoặc m=1/2(loại)
Phương trình hoành độ giao điểm là:
\(2x^2-2mx-6=0\)
a=2; b=-2m; c=-6
Vì ac<0 nên phương trình luôn có hai nghiệm phân biệt
Ta có: \(\left|x_1-x_2\right|=4\)
\(\Leftrightarrow\sqrt{\left(x_1-x_2\right)^2}=4\)
\(\Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)
\(\Leftrightarrow\sqrt{m^2-4\cdot\dfrac{-6}{2}}=4\)
\(\Leftrightarrow\sqrt{m^2+12}=4\)
\(\Leftrightarrow m^2+12=16\)
=>m=2 hoặc m=-2
PT hoành độ giao điểm: \(2x^2=-2mx+m+1\)
\(\Leftrightarrow2x^2+2mx-\left(m+1\right)=0\)
Vì (P) cắt (d) tại 2 điểm phân biệt nên \(\Delta'=m^2+2\left(m+1\right)>0\)
\(\Leftrightarrow\left(m+1\right)^2>0\left(\text{đúng với mọi }m\ne-1\right)\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{2m}{2}=-m\\x_1x_2=\dfrac{-\left(m+1\right)}{2}\end{matrix}\right.\)
Ta có \(\dfrac{1}{\left(2x_1-1\right)^2}+\dfrac{1}{\left(2x_2-1\right)^2}=2\)
\(\Leftrightarrow\dfrac{4x_2^2-4x_2+1+4x_1^2-4x_1+1}{\left[\left(2x_1-1\right)\left(2x_2-1\right)\right]^2}=2\\ \Leftrightarrow4\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-4\left(x_1+x_2\right)+2=2\left[4x_1x_2-2\left(x_1+x_2\right)+1\right]^2\\ \Leftrightarrow4\left(m^2+m+1\right)+4m=2\left(-2m-2+2m+1\right)^2\\ \Leftrightarrow4m^2+4m+4+4m=2\\ \Leftrightarrow2m^2+4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-2+\sqrt{2}}{2}\left(tm\right)\\m=\dfrac{-2-\sqrt{2}}{2}\left(tm\right)\end{matrix}\right.\)
- Xét phương trình hoành độ giao điểm :\(2mx^2=4x-2m^2\)
=> \(2mx^2-4x+2m^2=0\)
=> \(\Delta^,=b^{,2}-ac=\left(-2\right)^2-2m.2m^2=4-4m^3\)
- Để p cắt d tại hai điểm phân biệt
<=> Phương trình ( I ) có 2 nghiệm phân biệt
<=> \(\Delta^,>0\)
hay \(4-4m^3>0\)
=> \(m^3< 1\)
=> \(m< 1\)
- Theo vi ét có : \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=\frac{4}{2m}=\frac{2}{m}\\x_1x_2=\frac{c}{a}=\frac{2m^2}{2m}=m\end{matrix}\right.\)
- Ta có : \(P=\frac{8}{x_1+x_2}+\frac{x_1x_2}{2}\)
=> \(P=\frac{8}{\frac{2}{m}}+\frac{m}{2}=\frac{2:\frac{1}{8}}{2:m}+\frac{m}{2}=1:\frac{\frac{1}{8}}{m}+\frac{m}{2}=\frac{\frac{m}{\frac{1}{8}}m}{2}+\frac{m}{2}=8m+\frac{m}{2}=8,5m\)
Mắt mày bị song vành à