Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Số số hạng là : ( 2014 - 4 ) : 3 + 1 = 671
S là : ( 2014 + 4 ) x 671 : 2 = 677039
b) Có nếu n là số chẵn \(\Rightarrow n⋮2\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Nếu n là số lẻ \(\Rightarrow n+2013\)là số chẵn chia hết cho 2 \(\Rightarrow n\cdot\left(n+2013\right)⋮2\)
Vậy \(n\cdot\left(n+2013\right)\)luôn luôn chia hết cho 2 với mọi n ( ĐPCM )
c) \(M=2+2^2+2^3+...+2^{20}\)
\(2M=2\cdot\left(2+2^2+2^3+...+2^{20}\right)\)
\(2M=2^2+2^3+...+2^{21}\)
\(2M-M=2^{21}-2\)
Mà cứ 5 thừa số 2 thì số cuối của \(2^{21}\) sẽ lặp lại
\(\Rightarrow2^{21}\)có tận cùng là 2
\(\Rightarrow2^{21}-2\)có tận cùng là 0 chia hết cho 5
\(\Rightarrow M⋮5\)
a ) 56 : 54 + 32 . 3 - 20130
= 56-4 + 32+1 - 20130
= 52 + 33 - 20130
Vì các số nguyên trong khoảng từ 20 000 đến 29 999 nên ta gọi các số đó có dạng 2abcd
+) Nếu 1 trong 4 chữ số a; b; c;d giống chữ số 2 thì ta có các trường hợp sau:
TH1: b = 2 => 2abcd = 2a2cd :
Có 9 cách chọn chữ số a (trừ đi chữ số 2); có 8 cách chữ số c (trừ đi chữ số 2 và a); có 7 cách chọn chữ số d
=> có 9.8 .7 = 504 số có dạng 2a2cd
TH2: c = 2 => 2abcd = 2ab2d : tương tự như TH1 ta có 504 số
TH3: d = 2 => 2abcd = 2abc2 : ta có 504 số
+) Nếu a; b; c; d đều khác chữ số 2: Vì có 2 chữ số giống nhau và không đứng cạnh nhau nên ta có các trường hợp sau:
TH1: a = c => 2abcd = 2abad :
Có 9 cách chọn chữ số a (trừ đi chữ số 2); 8 cách chọn chữ số b; 7 cách chọn chữ số d
=> có 9.8.7 = 504 số
TH2: a = d => 2abcd = 2abca: tương tự trên ta có 504 số
TH3: b = d => 2abcd = 2abcb: ta cũng có 504 số
Từ các trường hợp trên ta có tất cả là: 504 x 6 = 3024 số thỏa mãn
TL: A. 21240
Giải thích:
Gọi số cần tìm là A
+) Vì A chia hết cho 2 và 5 => A có tận cùng = 0 (1)
+) Vì A chia hết cho 3 và 9 => A chia hết cho 9 => Tổng các chữ số của A chia hết cho 9 (2)
Từ (1) và (2), ta thấy chỉ có số 21240 thỏa mãn
Vậy đáp án cần tìm là: A. 21240
~HT~
TĐB:P=20130+20131+20132+.....+20132010
P=1+20131+20132+.....+20132010
2013xP= 20131+20132+.....+20132010+20132011
- P=1+ 20131+20132+.....+20132010
-------------------------------------------------------------------------------------------
Px2012=20132011-1
Px2012+1=20132011
Vậy Px2012+1=20132011