Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, mình nghĩ đề là OABM nhé
Xét (O) có MA ; MB lần lượt là tiếp tuyến với A;B là tiếp điểm
=> ^MAO = ^MBO = 900
Xét tứ giác OAMB có ^MAO + ^MBO = 1800
mà 2 góc này đối vậy tứ giác OAMB nt 1 đường tròn
Xét tam giác MAC và tam giác MDA có
^M _ chung
^MAC = ^MDA ( chắn cung AC )
Vậy tam giác MAC ~ tam giác MDA (g.g)
=> MA/MD=MC/MA => MA^2 = MD.MC
mà MA = MB ( tc tiếp tuyến cắt nhau )
Vậy MA . MB = MD . MC
c, bạn xem lại đề
a: Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=R^2\)
a. OM là đường trung trực của AB
⇒AM⊥AB tại H
xét ΔIAC và ΔIBA có
∠I chung
∠A=∠B=90
⇒ΔIAC ∼ ΔIBA (g.g)
⇒IA2=IB.IC
a) Vì MA,MB là tiếp tuyến \(\Rightarrow MA=MB\) và MO là phân giác \(\angle AMB\)
\(\Rightarrow OM\bot AB\)
Xét \(\Delta ICA\) và \(\Delta IAB:\) Ta có: \(\left\{{}\begin{matrix}\angle IAC=\angle IBA\\\angle BIAchung\end{matrix}\right.\)
\(\Rightarrow\Delta ICA\sim\Delta IAB\left(g-g\right)\Rightarrow\dfrac{IC}{IA}=\dfrac{IA}{IB}\Rightarrow IA^2=IB.IC\)
b) Ta có: \(IM^2=IA^2=IB.IC\Rightarrow\dfrac{IM}{IB}=\dfrac{IC}{IM}\)
Xét \(\Delta ICM\) và \(\Delta IMB:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{IM}{IB}=\dfrac{IC}{IM}\\\angle BIMchung\end{matrix}\right.\)
\(\Rightarrow\Delta ICM\sim\Delta IMB\left(c-g-c\right)\Rightarrow\angle IMC=\angle IMB=\angle BDC\)
\(\Rightarrow AM\parallel BD\)
c) Xét \(\Delta ABM\),có I là trung điểm MA,H là trung điểm AB
\(\Rightarrow IH\) là đường trung bình \(\Delta ABM\)\(\Rightarrow IH\parallel AB\)
\(\Rightarrow\angle CIH=\angle IBM=\angle CAH\Rightarrow CHAI\) nội tiếp
\(\Rightarrow\angle ACI=\angle AHI=\angle ABM=\angle BAM=\angle ABD\) \((AM\parallel BD)\)
\(=\angle ACD\)
\(\Rightarrow CA\) là phân giác
b) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC
Do đó: \(\widehat{ADC}=\widehat{MAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)
hay \(\widehat{MDA}=\widehat{MAC}\)
Xét ΔMDA và ΔMAC có
\(\widehat{MDA}=\widehat{MAC}\)(cmt)
\(\widehat{AMD}\) chung
Do đó: ΔMDA∼ΔMAC(g-g)
Suy ra: \(\dfrac{MD}{MA}=\dfrac{AD}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(MA\cdot AD=MD\cdot AC\)(đpcm)
a, Vì MA, MB là tiếp tuyến của (O) nên \(\angle MAO=\angle MBO=90^o\)
Suy ra: tứ giác OAMB nội tiếp
b, Xét ΔIAC và ΔIBA, có: ∠I chung, \(\angle IAC=\angle IBA\)
\(\Rightarrow \Delta IAC\sim \Delta IBA(g.g) \Rightarrow \dfrac{IA}{IC}=\dfrac{IB}{IA} \Rightarrow IA^2=IB.IC\)
c, Vì I là trung điểm MA nên \(IM^2=IA^2=IB.IC\Rightarrow \dfrac{IC}{IM}=\dfrac{IM}{IB} \)
\(\Rightarrow \Delta ICM \sim \Delta IMB (c.g.c) \Rightarrow \angle IMC=\angle IBM \) hay \(\angle CMA=\angle IBM\)
a: góc OAM+góc OBM=180 độ
=>OAMB nội tiếp
b: Xet ΔIAC và ΔIBA có
góc IAC=góc IBA
góc AIC chung
=>ΔIAC đồng dạng với ΔIBA
=>IA^2=IB*IC