K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2020
Ta có \(\widehat{ADB}=90^o\) (góc nt chắn nửa đường tròn)Xét tg vuông ACE và tg vuông ADB có \(\widehat{BAD}\) chung => tg ACE đồng dạng với tg ADB\(\Rightarrow\frac{AC}{AD}=\frac{AE}{AB}\)Xét tg vuông ABD có \(AD=\sqrt{AB^2-BD^2}=\sqrt{4.R^2-R^2}=R\sqrt{3}\)\(\Rightarrow\frac{\frac{R}{2}}{R\sqrt{3}}=\frac{AE}{2R}\Rightarrow AE=\frac{R\sqrt{3}}{3}\Rightarrow ED=AD-AE=R\sqrt{3}-\frac{R\sqrt{3}}{3}=\frac{2R\sqrt{3}}{3}\)
7 tháng 11 2020

AD=\(\sqrt{3}\)R

AE=(1/4)AD=\(\frac{\sqrt{3}}{4}\)R

DE=\(\frac{3\sqrt{3}}{4}\)R

a: góc ADB=1/2*sđ cung AB=90 độ

Xét ΔADB vuông tại D có sin DAB=DB/AB=1/2

=>góc DAB=30 độ

OA=R

=>AC=OC=R/2

Xet ΔECA vuông tại C có tan EAC=EC/AC

=>EC/0,5R=tan30

=>EC=R*căn 3/6

=>EA=căn 3/3*R

\(DA=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)

\(EC=R\sqrt{3}-R\cdot\dfrac{\sqrt{3}}{3}=\dfrac{2}{3}\cdot\sqrt{3}\cdot R\)

b: Xet ΔADBvuông tại D và ΔFCB vuông tại C có

góc B chung

=>ΔADB đồng dạng vơi ΔFCB

c: Xét ΔBAF có

FC,AD là đường cao

FC cắt AD tại E

=>E là trực tâm

=>BE vuông góc AF

22 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

b: AO là đường trung trực của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

\(\widehat{EDB}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{ABE}=\widehat{EDB}\)

Xét ΔABE và ΔADB có

\(\widehat{ABE}=\widehat{ADB}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE đồng dạng với ΔADB

=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)

=>\(AB^2=AD\cdot AE\)

c: Xét (O) có

MB,ME là các tiếp tuyến

Do đó: MB=ME

Xét (O) có

NE,NC là các tiếp tuyến

Do đó: NE=NC

Chu vi tam giác AMN là:

\(AM+MN+AN\)

\(=AM+ME+EN+AN\)

\(=AM+MB+AN+NC\)

=AB+AC

27 tháng 5 2018

giúp câu c

30 tháng 4 2017

Cho đường tròn (O), đường kính AB. Trên tiếp tuyến của (O) tại A lấy điểm M (M khác A). Từ M kẻ cát tuyến MCD (C nằm ở giữa M và D; tia MC nằm giữa MA và MO) và tiếp tuyến thứ hai MI (I là tiếp điểm) với đường tròn (O). Đường thẳng BC và BD cắt đường thẳng OM lần lượt tại E và F. Chứng minh:

  O là trung điểm của EF

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)

2 tháng 2 2022

đây là đề học sinh giỏi của tỉnh hải dương năm 2020-2021 ạ