K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

Xét (O) có

EA,EC là các tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại M

Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)

nên CMON là hình chữ nhật

=>C,M,O,N cùng thuộc đường tròn đường kính CO(1)

Ta có: ΔCHO vuông tại H

=>H nằm trên đường tròn đường kính CO(2)

Từ (1),(2) suy ra C,M,O,N,H cùng nằm trên đường tròn đường kính CO

mà O cố định

nên đường tròn ngoại tiếp ΔHMN luôn đi qua điểm O cố định

20 tháng 11 2023

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC và OE là phân giác của \(\widehat{AOC}\)

EA=EC

=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

b: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=4R^2\)

c: \(\widehat{EAC}+\widehat{EDC}=90^0\)(ΔACD vuông tại C)

\(\widehat{ECA}+\widehat{ECD}=\widehat{ACD}=90^0\)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EDC}=\widehat{ECD}\)

=>ED=EC

mà EC=EA

nên EA=ED
d: Xét ΔOCF và ΔOBF có

OC=OB

CF=BF

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>FB là tiếp tuyến của (O)

e: ΔOBF=ΔOCF

=>\(\widehat{BOF}=\widehat{COF}\)

=>OF là phân giác của \(\widehat{COB}\)

=>\(\widehat{COB}=2\cdot\widehat{COF}\)

\(\widehat{EOF}=\widehat{EOC}+\widehat{FOC}\)

\(=\dfrac{1}{2}\left(\widehat{COA}+\widehat{COB}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔEOF vuông tại O

a: Đường thẳng tiếp xúc với đường tròn tại C cắt AD tại E

=>EC là tiếp tuyến tại C của đường tròn

=>EC\(\perp\)OC tại C

Xét tứ giác EAOC có

\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)

nên EAOC là tứ giác nội tiếp

=>E,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=\left(2R\right)^2=4R^2\)

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

Ta có: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

c: ΔOBC cân tại O

mà OF là đường cao

nên OF là phân giác của góc BOC

OC\(\perp\)CE tại C

mà C\(\in\)EF

nên OC\(\perp\)CF tại C

Xét ΔOCF và ΔOBF có

OC=OB

\(\widehat{COF}=\widehat{BOF}\)

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>BF là tiếp tuyến của (O;R)

Đề thi vào 10 môn Toán có đáp án | Đề thi môn Toán vào 10 có đáp án

\(\text{a) Xét tứ giác ADMO có:}\)

∠DMO =90o (do M là tiếp tuyến của (O))

∠DAO =90o (do AD là tiếp tuyến của (O))

=> ∠DMO + ∠DAO = 180o

=> Tứ giác ADMO là tứ giác nội tiếp.

\(\text{b) Do D là giao điểm của 2 tiếp tuyến DM và DA nên OD là tia phân giác của ∠AOM}\)

=>(AOD = \(\frac{1}{2}\)∠AOM

Mặt khác ta có (ABM là góc nội tiếp chắn cung AM

=> ∠ABM = \(\frac{1}{2}\)∠AOM

=> ∠AOD = ∠ABM

Mà 2 góc này ở vị trí đồng vị

=> OD // BM

Xét tam giác ABN có:

OM// BM; O là trung điểm của AB

=> D là trung điểm của AN

c) Ta có: ΔOBM cân tại O ;OE ⊥MB =>OE là đường trung trực của MB

=>EM = EB => ΔMEB cân tại E => ∠EMB = ∠MEB (1)

ΔOBM cân tại O => ∠OMB = ∠OBM (2)

Cộng (1) và (2) vế với vế, ta được:

∠EMB + ∠OMB = ∠MEB + ∠OBM ⇔ ∠EMO =∠EOB ⇔ ∠EOB =90o

=>OB ⊥ BE

Vậy BE là tiếp tuyến của (O).

d) Lấy điểm E trên tia OA sao cho OE = \(\frac{OA}{3}\)

Xét tam giác OAI có OI vừa là đường cao vừa là trung tuyến

=> Tam giác OAI cân tại I => IA = IB; ∠IBA = ∠IAB

Ta có:

\(\hept{\begin{cases}\widehat{IBA}=\widehat{IAB}\\\widehat{IBA}+\widehat{INA}=90^0\\\widehat{NAI}+\widehat{IAB}=\widehat{NAB}=90^0\end{cases}}\)

=> ∠NAI = ∠INA => ΔINA cân tại I => IA = IN

Tam giác NAB vuông tại A có: IA = IN = IB

=> IA là trung tuyến của tam giác NAB

Xét ΔBNA có:

IA và BD là trung tuyến; IA ∩ BD = {J}

=> J là trọng tâm của tam giác BNA

Xét tam giác AIO có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}=\frac{2}{3}\Rightarrow\text{JE}\text{//}OI\)

=> J nằm trên đường thẳng d vuông góc với AB và cách O một khoảng bằng R/3.

Phần đảo: Lấy điểm J' bất kì thuộc đường thẳng d

Do d// OI (cùng vuông góc AB) nên ta có:

\(\frac{\text{AJ}}{AI}=\frac{AE}{A0}\)

\(\text{MÀ}\frac{AE}{AO}=\frac{2}{3}\Rightarrow\frac{\text{AJ}}{AI}=\frac{2}{3}\)

AI là trung tuyến của tam giác NAB

=> J' là trọng tâm tam giác NAB

Vậy khi M di chuyển trên (O) thì J di chuyển trên đường thẳng d vuông góc với AB và cách O một khoảng là R/3.

HÌNH Ở TRONG THỐNG KÊ HỎI ĐÁP NHA

19 tháng 2 2022

loading...