K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2023

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC và OE là phân giác của \(\widehat{AOC}\)

EA=EC

=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

b: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=4R^2\)

c: \(\widehat{EAC}+\widehat{EDC}=90^0\)(ΔACD vuông tại C)

\(\widehat{ECA}+\widehat{ECD}=\widehat{ACD}=90^0\)

mà \(\widehat{EAC}=\widehat{ECA}\)

nên \(\widehat{EDC}=\widehat{ECD}\)

=>ED=EC

mà EC=EA

nên EA=ED
d: Xét ΔOCF và ΔOBF có

OC=OB

CF=BF

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>FB là tiếp tuyến của (O)

e: ΔOBF=ΔOCF

=>\(\widehat{BOF}=\widehat{COF}\)

=>OF là phân giác của \(\widehat{COB}\)

=>\(\widehat{COB}=2\cdot\widehat{COF}\)

\(\widehat{EOF}=\widehat{EOC}+\widehat{FOC}\)

\(=\dfrac{1}{2}\left(\widehat{COA}+\widehat{COB}\right)\)

\(=\dfrac{1}{2}\cdot180^0=90^0\)

=>ΔEOF vuông tại O

18 tháng 12 2023

Xét (O) có

EA,EC là các tiếp tuyến

Do đó: EA=EC

=>E nằm trên đường trung trực của AC(1)

Ta có: OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC tại M

Xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

Xét tứ giác CMON có \(\widehat{CMO}=\widehat{CNO}=\widehat{MCN}=90^0\)

nên CMON là hình chữ nhật

=>C,M,O,N cùng thuộc đường tròn đường kính CO(1)

Ta có: ΔCHO vuông tại H

=>H nằm trên đường tròn đường kính CO(2)

Từ (1),(2) suy ra C,M,O,N,H cùng nằm trên đường tròn đường kính CO

mà O cố định

nên đường tròn ngoại tiếp ΔHMN luôn đi qua điểm O cố định

20 tháng 12 2017

A B O C H D E F K M I J

Gọi giao điểm của AK và MB là I; giao điểm của IF với AB là J.

Xét tam giác vuông ICA ta thấy DA = DC nên DA = DC = DI.

Lại có DB là trung trực của AF nên DA = DF. Vậy thì DA = DF = DI hay tam giác IFA vuông tại F, suy ra DB // IJ.

Vậy thì DB là đường trung bình tam giác AIJ hay B là trung điểm AJ.

Ta có KF // AJ nên áp dụng Ta let ta có:

\(\frac{KM}{AB}=\frac{IM}{IB}=\frac{MF}{BJ}\)

Do AB = BJ nên KM = MF.

a: Đường thẳng tiếp xúc với đường tròn tại C cắt AD tại E

=>EC là tiếp tuyến tại C của đường tròn

=>EC\(\perp\)OC tại C

Xét tứ giác EAOC có

\(\widehat{EAO}+\widehat{ECO}=90^0+90^0=180^0\)

nên EAOC là tứ giác nội tiếp

=>E,A,O,C cùng thuộc một đường tròn

b: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)DB tại C

Xét ΔDAB vuông tại A có AC là đường cao

nên \(BC\cdot BD=BA^2=\left(2R\right)^2=4R^2\)

Xét (O) có

EA,EC là tiếp tuyến

Do đó: EA=EC
=>E nằm trên đường trung trực của AC(1)

OA=OC

=>O nằm trên đường trung trực của AC(2)

Từ (1) và (2) suy ra OE là đường trung trực của AC

=>OE\(\perp\)AC

Ta có: OE\(\perp\)AC

AC\(\perp\)BD

Do đó: OE//BD

c: ΔOBC cân tại O

mà OF là đường cao

nên OF là phân giác của góc BOC

OC\(\perp\)CE tại C

mà C\(\in\)EF

nên OC\(\perp\)CF tại C

Xét ΔOCF và ΔOBF có

OC=OB

\(\widehat{COF}=\widehat{BOF}\)

OF chung

Do đó: ΔOCF=ΔOBF

=>\(\widehat{OCF}=\widehat{OBF}=90^0\)

=>BF là tiếp tuyến của (O;R)

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại Ma) tam giác MAB là tam giác j?b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với...
Đọc tiếp

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.

1
27 tháng 4 2021

Ai giả câu c bài 2 đi ạ khó quá 

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0