Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet ΔCMO và ΔICO có
góc CMO=góc ICO
góc IOC chung
=>ΔCMO đồng dạng với ΔICO
=>CM/IC=MO/CO
=>CM/MO=IC/CO
=>CM*CO=MO*IC
=>CM^2*CO=MC*MO*IC
=>\(\dfrac{CM^2}{MO\cdot IC}=\dfrac{CM}{CO}\left(1\right)\)
ΔIEM đồng dạng với ΔCOM do góc IEM=góc MOC và góc EMI=góc OMC
=>IM/IE=CM/CO
=>\(\dfrac{IM\cdot IO}{MC^2}=\dfrac{IE}{IC}\)
mà MA^2=MI*MO
nên \(\dfrac{NA^2}{NC^2}=\dfrac{IE}{IC}\)
nên MB^2/MC^2=IE/IC
=>\(MB\cdot\sqrt{IC}=MC\cdot\sqrt{IE}\)
a) Xét tứ giác IAOB có
\(\widehat{IAO}\) và \(\widehat{IBO}\) là hai góc đối
\(\widehat{IAO}+\widehat{IBO}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: IAOB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét (O) có
\(\widehat{ADC}\) là góc nội tiếp chắn \(\stackrel\frown{AC}\)
\(\widehat{IAC}\) là góc tạo bởi tiếp tuyến AI và dây cung AC
Do đó: \(\widehat{ADC}=\widehat{IAC}\)(Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)
hay \(\widehat{IDA}=\widehat{IAC}\)
Xét ΔIDA và ΔIAC có
\(\widehat{IDA}=\widehat{IAC}\)(cmt)
\(\widehat{AIC}\) chung
Do đó: ΔIDA∼ΔIAC(g-g)
Suy ra: \(\dfrac{ID}{IA}=\dfrac{IA}{IC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(IA^2=IC\cdot ID\)(đpcm)
a/
+)Vì IA và IB là 2 tt của (O)
=> IA = IB; mặt khác OA = OB
=> IO là trung trực của AB
=> AH = BH = 1/2 AB = 24/2 = 12 (cm)
+) A/dụng định lý pytago vào ΔIAH vuông tại H có: \(IA^2=AH^2+IH^2\)
hay \(20^2=12^2+IH^2\Rightarrow IH^2=256\Rightarrow IH=16\left(cm\right)\)
+) A/dụng hệ thức lượng trong ΔIAO vuông tại A có: \(AH^2=IH\cdot OH\Rightarrow OH=\dfrac{AH^2}{IH}=\dfrac{12^2}{16}=9\left(cm\right)\)
b/ A/dụng hệ thức lượng trong ΔIAO vuông tại A có: \(OA^2=IO\cdot OH=\left(IH+OH\right)\cdot OH=\left(16+9\right)\cdot9=225\)
\(\Rightarrow OA=15\left(cm\right)\) hay R = 15 (cm)
a) Ta có:
IA = IB (tính chất hai tiếp tuyến cắt nhau)
⇒ I nằm trên đường trung trực của AB (1)
OA = OB (bán kính)
⇒ O nằm trên đường trung trực của AB (2)
Từ (1) và (2) ⇒ OI là đường trung trực của AB
Mà H là giao điểm của AB và OI
⇒ H là trung điểm của AB
⇒ AH = AB : 2 = 24 : 2 = 12 (cm)
Do OI là đường trung trực của AB (cmt)
⇒ AH ⊥ OI
⇒ AH ⊥ HI
∆AHI vuông tại H
⇒ AI² = AH² + IH² (Pytago)
⇒ IH² = AI² - AH²
= 20² - 12²
= 256
⇒ IH = 16 (cm)
∆OAI vuông tại A có AH là đường cao
⇒ AH² = IH.OH
⇒ OH = AH² : IH
= 12² : 16
= 9 (cm)
b) Bán kính của (O) là đoạn OA
Ta có:
OI = OH + IH = 9 + 16 = 25 (cm)
∆OAI vuông tại A
⇒ OI² = IA² + OA² (Pytago)
OA² = OI² - IA²
= 25² - 20²
= 225
⇒ OA = 15 (cm)
Vậy bán kính OA = 15 cm
Để giải bài toán này, chúng ta có thể sử dụng các định lý về tiếp tuyến và đường tròn. Dưới đây là cách giải từng phần của bài toán:
a) Để tính độ dài AH, IH và OH, chúng ta cần sử dụng định lý về tiếp tuyến và đường tròn.
Theo định lý tiếp tuyến, ta có:
AH^2 = AI * AB
AH^2 = 20cm * 24cm
AH^2 = 480cm^2
AH = √480cm ≈ 21.91cm
Theo định lý tiếp tuyến, ta cũng có:
IH^2 = IB * AB
IH^2 = 20cm * 24cm
IH^2 = 480cm^2
IH = √480cm ≈ 21.91cm
Để tính OH, chúng ta cần sử dụng định lý về trung điểm. Vì O là trung điểm của đoạn thẳng IH, nên ta có:
OH = 1/2 * IH
OH = 1/2 * 21.91cm
OH ≈ 10.96cm
Vậy, độ dài AH là khoảng 21.91cm, độ dài IH là khoảng 21.91cm và độ dài OH là khoảng 10.96cm.
b) Để tính bán kính (o), chúng ta có thể sử dụng định lý về đường tròn ngoại tiếp.
Theo định lý đường tròn ngoại tiếp, ta có:
R = AI = 20cm
Vậy, bán kính (o) là 20cm.