K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét `2 triangle MBC` và `triangle MDA`.

`hatM` chung

`hat(ABC) = hat(MDA)` vì cùng chắn cung `AC`.

`=> triangle MBC = triangle MDA (g-g)`.

`-> (MB)/(MC) = (MD)/(MA).`

`=> MA . MB = MC . MD`.

8 tháng 1 2017

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

TH1: M nằm trong đường tròn.

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9 là hai góc nội tiếp cùng chắn cung Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ MA.MB = MC.MD

TH2: M nằm ngoài đường tròn.

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔMBC và ΔMDA có:

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

+ Góc nội tiếp chắn một cung có số đo bằng một nửa số đo của cung đó.

+ Hai góc nội tiếp chắn cùng một cung thì có số đo bằng nhau.

18 tháng 7 2018

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

TH1: M nằm trong đường tròn.

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9 là hai góc nội tiếp cùng chắn cung Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ MA.MB = MC.MD

TH2: M nằm ngoài đường tròn.

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

ΔMBC và ΔMDA có:

Giải bài 23 trang 76 SGK Toán 9 Tập 2 | Giải toán lớp 9

23 tháng 11 2023

Xét (O) có

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ADC}=\widehat{ABC}\)

=>\(\widehat{MDA}=\widehat{MBC}\)

Xét ΔMDA và ΔMBC có

\(\widehat{MDA}=\widehat{MBC}\)

\(\widehat{M}\) chung

Do đó: ΔMDA đồng dạng với ΔMBC

=>\(\dfrac{MD}{MB}=\dfrac{MA}{MC}\)

=>\(MD\cdot MC=MB\cdot MA\)

a) M ở bên trong đường tròn (hình a)

Xét hai tam giác MAB' và MA'B chúng có:

= ( đối đỉnh)

= (hai góc nội tiếp cùng chắn cung ).

Do đó ∆MAB' ~ ∆MA'B, suy ra:

= , do đó MA. MB = MB'. MA'

b) M ở bên ngoài đường tròn (hình b)

∆MAB' ~ ∆MA'B

M chung = (hai góc nội tiếp cùng chắn cung ).

Suy ra: =

hay MA. MB = MB'. MA'



5 tháng 4 2020

P M E B A O C

5 tháng 4 2020

a ) Ta có : PA // BC => ^MPE = ^ECB = ^PBM  vì PB là tiếp tuyến của (O)

=> \(\Delta MPE~\Delta MBP\left(g.g\right)\)

\(\Rightarrow\frac{MP}{MB}=\frac{ME}{MP}\Rightarrow MP^2=ME.MB\)

b ) .Ta có MA là tiếp tuyến của (O)

\(\Rightarrow\widehat{MAE}=\widehat{MBA}\Rightarrow\Delta MAE~\Delta MBA\left(g.g\right)\)

\(\Rightarrow\frac{MA}{MB}=\frac{ME}{MA}\Rightarrow MA^2=ME.MB\)

\(\Rightarrow MA^2=MP^2\Rightarrow MA=MP\Rightarrow M\) là trung điểm PA