Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\\AB\perp OH\end{matrix}\right.\)
\(sin\widehat{AOH}=\dfrac{AH}{OA}=\dfrac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{AOH}=60^0\Rightarrow\) cung nhỏ AB có số đo \(120^0\) , cung lớn AB có số đo \(240^0\)
- Thấy : \(OA^2+OB^2=R^2+R^2=2R^2\)
Mà \(AB^2=2R^2\)
\(\Rightarrow OA^2+OB^2=AB^2\)
=> Tam giác OAB vuông cân tại O .
\(\Rightarrow\stackrel\frown{AOB}=90^o\)
Lời giải:
a. Câu hỏi chưa rõ ràng
b. Vì số đo cung nhỏ AB bằng một nửa số đo cung lớn AB mà tổng số
đo 2 cung bằng $360^0$ nên số đo cung nhỏ $AB$ là $120^0$
Từ $O$ kẻ $OH\perp AB$ như hình. Tam giác $OAB$ cân tại $O$ nên đường cao $OH$ đồng thời là đường phân giác, trung tuyến.
Do đó: $\widehat{AOH}=\frac{1}{2}\widehat{AOB}=\frac{1}{2}.120^0=60^0$
$\frac{AH}{AO}=\sin \widehat{AOH}=\sin 60^0=\frac{\sqrt{3}}{2}$
$\Rightarrow AH=\frac{\sqrt{3}}{2}AO=\frac{\sqrt{3}}{2}R$
$\Rightarrow AB=2AH=\sqrt{3}R$
Tính được sđ A B ⏜ nhỏ = A O B ^ = 90 0
Suy ra sđ A B ⏜ lớn = 270 0
∆OAB có:
OA = OB = AB = R
⇒ ∆OAB đều
⇒ AOB = 60⁰
⇒ Số đo cung nhỏ AB là 60⁰
⇒ Số đo cung lớn AB là: 360⁰ - 60⁰ = 300⁰
ΔOAB có OA=OB=AB
nên ΔOAB đều
=>góc AOB=60 độ
=>sđ cung lớn AB=360-60=300 độ
Từ O kẻ đg thg vg góc vs AB tại H
=> AH=BH=AB/2 = R căn 3 /2
Theo hệ thức lượng trong tam giác AHO vuông ở H ta có
SIN góc AOH = R căn 3 /2 : R
= căn 3/2 = 60
=> Góc AOB = 2 góc AOH= 2*60 =120
SĐ AB nhỏ =120
SĐ AB lớn = 360 - sđ AB nhỏ = 360 -120 = 240
Hình bạn tự vẽ nhé:
Ta có : AB=OA=OB=R \(\Rightarrow\Delta OAB\) đều \(\Rightarrow\) góc AOB=60 độ. Mà góc AOB là góc ở tâm chắn cung AB \(\Rightarrow\) số đo cung AB nhỏ =60 độ ⇒ số đo cung AB lớn =360 độ -60 độ =300 độ