Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc BEA=1/2*sđ cung BA
góc CEA=1/2*sđ cung CA
mà sđ cung BA=sđ cung CA
nên góc BEA=góc CEA
=>EA là phân giác của góc BEC
b: Xét ΔAEB và ΔABD có
góc AEB=góc ABD
góc BAE chung
Do đó: ΔAEB đồng dạng với ΔABD
a: Xét (O) có
ΔCAB nội tiếp
AB là đường kính
Do đó: ΔCAB vuông tại C
=>\(\widehat{ACB}=90^0\)
b: Xét (O) có
ΔCBD nội tiếp
CD là đường kính
Do đó: ΔCBD vuông tại B
Xét (O) có
\(\widehat{CAB}\) là góc nội tiếp chắn cung CB
\(\widehat{CDB}\) là góc nội tiếp chắn cung CB
Do đó: \(\widehat{CAB}=\widehat{CDB}\)
Xét ΔACH vuông tại H và ΔDCB vuông tại B có
\(\widehat{HAC}=\widehat{BDC}\)
Do đó: ΔACH~ΔDCB
c: Sửa đề: cắt AC tại E
Xét ΔEBA vuông tại B có BC là đường cao
nên \(AC\cdot AE=AB^2=\left(2R\right)^2=4R^2\)
a) Ta có: Tứ giác ABEC nội tiếp đường tròn (O) => ^ABC=^AEC hay ^ABD=^AEC.
Xét \(\Delta\)ADB và \(\Delta\)ACE: ^ABD=^AEC; ^ADB=^ACE (=900) => \(\Delta\)ADB ~ \(\Delta\)ACE (g.g)
=> \(\frac{AB}{AE}=\frac{AD}{AC}\Rightarrow AB.AC=AD.AE\)(đpcm).
b) Gọi giao điểm của AC và BF là M.
Ta có: AF//BC => ^AFM=^CBM. Mà ^CBM=^FAM (Cùng chắn cung CF) => ^AFM=^FAM
=> \(\Delta\)AMF cân đỉnh M => AM=FM.
Lại có: ^BCM=^FAM (So le trg) => ^BCM=^CBM => \(\Delta\)BMC cân tại M => MB=MC
=> \(\Delta\)AMB=\(\Delta\)FMC (c.g.c) => ^ABM=^FCM => ^ABM+^MBC=^FCM+^CBM => ^ABC=^FCB
=> Tứ giác ABCF là hình thang cân => ^BAF=^CFA.
Dễ thấy: ^DAF=900 (Do AD vuông BC và AF//BC); ^EFA=900
=> ^BAF - ^DAF = ^CFA - ^EFA => ^BAD=^CFE hay ^BAP=^CFQ
Xét \(\Delta\)APB và \(\Delta\)FQC: AB=FC; ^BAP=^CFQ; ^ABP=^FCQ
=> \(\Delta\)APB=\(\Delta\)FQC (g.c.g) => AP=FQ (2 cạnh tương ứng)
Xét tứ giác APQF: ^PAF=^QFA (=900); AP=FQ => Tứ giác APQF là hình chữ nhật
=> ^APQ=900 => PQ vuông góc AD. Mà AD vuông BC nên PQ//BC (Q.h //, vg góc).
c) Gọi giao điểm của FE với BC là R; AD cắt (O) tại L.
Theo chứng minh ở câu a): \(AB.AC=AD.AE\)
\(\Rightarrow AB.AC-AD.AK=AD.AE-AD.AK=AD\left(AE-AK\right)=AD.KE\)(*)
Ta có tứ giác ABEC nội tiếp (O) => \(\Delta\)AKC ~ \(\Delta\)BKE (g.g)
\(\Rightarrow\frac{AK}{BK}=\frac{CK}{KE}\Rightarrow BK.CK=AK.KE\)(1)
Tương tự: \(\Delta\)ADC ~ \(\Delta\)BDL (g.g)
\(\Rightarrow\frac{AD}{BD}=\frac{CD}{DL}\Rightarrow BD.CD=AD.DL\)(2)
Nhân (1) với (2) theo vế, ta được:
\(BD.CD.BK.CK=AD.AD.KE.AK=\left(KE.AD\right).\left(AK.DL\right)\)(3)
Dễ c/m: 2 tứ giác AFRD và AFEL là hình chữ nhật => AD=FR và AL=FE
=> AL-AD = FE-FR => DL=RE, thay vào (3) suy ra:
\(BD.CD.BK.CK=\left(KE.AD\right).\left(AK.RE\right)\)(4)
Áp dụng hệ quả ĐL Thales: \(\frac{AK}{KE}=\frac{AD}{RE}\)(Do AD//RE) \(\Rightarrow AK.RE=KE.AD\)
Thay vào (4) => \(BD.CD.BK.CK=\left(KE.AD\right).\left(KE.AD\right)=\left(KE.AD\right)^2\)
\(\Leftrightarrow\sqrt{BD.CD.BK.CK}=KE.AD\)(**)
Từ (*) và (**) => \(AB.AC-AD.AK=\sqrt{BD.CD.BK.CK}\)(đpcm).
a, Xét tam giác ACD và tam giác BED
^CAE = ^CBE ( cùng chắn cung CE )
^ACB = ^BEA ( cùng chắn cung AB )
Vậy tam giác ACD ~ tam giác BED ( g.g ) (1)
b, Trong (O) có AE giao BC = D
Xét tam giác ABD và tam giác CED ta có :
^ADB = ^CDE ( đối đỉnh )
^ABC = ^CEA ( cùng chắn cung AC )
Vậy tam giác ABD ~ tam giác CED ( g.g )
=> \(\frac{AB}{CE}=\frac{AD}{CD}\Rightarrow AB.CD=AD.CE\)