Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\Delta AOC\)cân tại O có OD là đường cao nên cũng là phân giác của \(\widehat{AOC}\), do đó \(\widehat{AOD}=\widehat{COD}\Rightarrow\widebat{AD}=\widebat{DM}\)
nên DA = DM. Vậy tam giác AMD cân tại D (đpcm)
2) Dễ thấy \(\Delta OEA=\Delta OEC\left(c-g-c\right)\), từ đó suy ra được \(\widehat{OAE}=\widehat{OCE}=90^0\)
Do đó \(AE\perp AB\). Vậy AE là tiếp tuyến chung của \(\left(O\right)\)và \(\left(O'\right)\)
3) Giả sử AM cắt \(\left(O\right)\)tại \(N'\). Ta có \(\Delta OAN'\)cân tại O và \(OM\perp AN'\)nên OM là đường trung trực của AN'. Từ đó ta được CA = CN'
Ta có \(\widehat{CN'A}=\widehat{CAM}\) mà \(\widehat{CAM}=\widehat{DOM}\), do đó \(\widehat{CN'H}=\widehat{COH}\). Suy ra bốn điểm C, N', O, H thuộc một đường tròn. Suy ra N' thuộc đường tròn ngoại tiếp \(\Delta CHO\). Do vậy \(N'\equiv N\)
Vậy ba điểm A, M, N thẳng hàng (đpcm)
4) Vì ME song song với AB và \(AB\perp AE\)nên \(ME\perp AE\)
Ta có hai tam giác MAO, EMA đồng dạng nên \(\frac{MO}{EA}=\frac{MA}{EM}=\frac{AO}{MA}\Rightarrow MA^2=AO.EM\)
Dễ thấy \(\Delta MEO\) cân tại M nên ME MO. = Thay vào hệ thức trên ta được\(MA^2=AO.MO\)
Đặt MO = x > 0 \(\Rightarrow MA^2=OA^2-MO^2=a^2-x^2\)
Từ \(MA^2=AO.MO\) suy ra \(a^2-x^2=ax\Leftrightarrow x^2+ax-a^2=0\)
Từ đó tìm được \(x=\frac{\left(\sqrt{5}-1\right)a}{2}\)
Vậy \(OM=\frac{\left(\sqrt{5}-1\right)a}{2}\)
Nguyễn Lê Phước Thịnh
Akai Haruma
Nguyễn Việt Lâm
Hồng Phúc
Giúp em câu c là đc ạ
Gọi FO cắt (O) tại G khác F. Dễ dàng chứng minh \(\Delta\)DOF = \(\Delta\)COG (c.g.c) => ^OFD = ^OGC
=> DF // CG. Mà DF // CE nên E,C,G thẳng hàng (Tiên đề Euclid). Khi đó ^FEG chắn nửa đường tròn (O)
=> EF vuông góc với CE và DF. Từ đây \(S_{CEF}+S_{DEF}=\frac{EF\left(CE+DF\right)}{2}\)(1)
Dễ thấy OI là đường trung bình của hình thang CEFD (CE // DF) => \(OI=\frac{CE+DF}{2}\)(2)
Từ (1) và (2) suy ra \(S_{CEF}+S_{DEF}=EF.OI\)(đpcm).