Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Do \(\widehat{ACB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ACB}=90^0\)
\(\Rightarrow\widehat{ACD}=90^0\Rightarrow\Delta ACD\) vuông tại C
\(\Rightarrow\widehat{ADC}+\widehat{DAC}=90^0\) (1)
Lại có \(\widehat{DAC}=\widehat{DAx}\) (do AD là phân giác)
\(\widehat{BAE}+\widehat{DAx}=90^0\) (Ax là tiếp tuyến tại A)
\(\Rightarrow\widehat{BAE}+\widehat{DAC}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{ADC}=\widehat{BAE}\)
\(\Rightarrow\Delta ABD\) cân tại B
b.
\(\widehat{AEB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{AEB}=90^0\Rightarrow AE\perp BE\)
\(\Rightarrow BE\) là đường cao trong tam giác BAD
Mà tam giác BAD cân tại B \(\Rightarrow BE\) đồng thời là trung tuyến
\(\Rightarrow E\) là trung điểm AD
Lại có O là trung điểm AB
\(\Rightarrow OE\) là đường trung bình tam giác ABD
\(\Rightarrow OE||BD\)
c.
Xét tam giác ABD có: \(AC\perp BD;BE\perp AD\)
\(\Rightarrow I\) là trực tâm tam giác ABD
\(\Rightarrow DI\) là đường cao thứ 3
\(\Rightarrow DI\perp AB\)
d.
Ta có: \(\widehat{BAC}+\widehat{CAx}=90^0\)
\(\Rightarrow\widehat{BAC}+2.\widehat{CAE}=90^0\)
\(\Rightarrow\widehat{CAE}=\dfrac{90^0-20^0}{2}=35^0\)
\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=20^0+35^0=55^0\)
Xét tam giác vuông ABE có:
\(cos\widehat{BAE}=\dfrac{AE}{AB}\Rightarrow AE=AB.cos\widehat{BAE}=2.cos55^0\approx1,15\left(cm\right)\)
a) Xét (O) có
\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn
nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)
hay \(\widehat{DCB}=90^0\)
Xét tứ giác DCBO có
\(\widehat{DCB}\) và \(\widehat{DOB}\) là hai góc đối
\(\widehat{DCB}+\widehat{DOB}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: DCBO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
a) Từ E vẽ đường thẳng vuông góc với Ax tại N
Ta có EN song song AB ( cùng \(\perp\) Ax)
Xét ΔNAE vuông tại N và ΔCAD vuông tại C, có
\(\widehat{NAE}\) = \(\widehat{CAD}\) (AD là tia phân giác của \(\widehat{CAx}\))
→ΔNAE đồng dạng ΔCAD (gn)
→\(\widehat{AEN}\) = \(\widehat{ADC}\) (2 góc tương ứng)
mà \(\widehat{AEN}\) = \(\widehat{BAE}\) ( 2goc1 so le trong của eN song song AB)
→\(\widehat{ADC}\) = \(\widehat{BAE}\) (cùng bằng \(\widehat{AEN}\) )
→ΔBAD cân tại B
Ta lại có ΔOAE cân tại O (OA=OE)
→\(\widehat{OAE}\) = \(\widehat{OEA}\) mà \(\widehat{BAE}\) =\(\widehat{ADC}\) (cmt)
→\(\widehat{OEA}\) = \(\widehat{ADC}\) (cùng bằng \(\widehat{OAE}\) )
mà 2 góc này nằm ở vị trí đồng vị của OE và BD→OE song song BD
b)Xét ΔACB nội tiếp (O) có đường kính AB
→ΔACB vuông tại C có cạnh huyền AB
Xét ΔAEB nội tiếp (O) có đường kính AB
→ΔAEB vuông tại E có cạnh huyền AB
Xét ΔADB có 2 đường cao Ac và BE cắt nhau tại I
→I là trực tâm→DI là đường cao trong ΔADB→DI \(\perp\) AB