K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2016

A B O D C E I N x a) Từ E vẽ đường thẳng vuông góc với Ax tại N

Ta có EN song song AB ( cùng \(\perp\) Ax)

Xét ΔNAE vuông tại N và ΔCAD vuông tại C, có

\(\widehat{NAE}\) = \(\widehat{CAD}\) (AD là tia phân giác của \(\widehat{CAx}\))

→ΔNAE đồng dạng ΔCAD (gn)

\(\widehat{AEN}\) = \(\widehat{ADC}\) (2 góc tương ứng)

\(\widehat{AEN}\) = \(\widehat{BAE}\) ( 2goc1 so le trong của eN song song AB)

\(\widehat{ADC}\) = \(\widehat{BAE}\) (cùng bằng \(\widehat{AEN}\) )

→ΔBAD cân tại B

Ta lại có ΔOAE cân tại O (OA=OE)

\(\widehat{OAE}\) = \(\widehat{OEA}\)\(\widehat{BAE}\) =\(\widehat{ADC}\) (cmt)

\(\widehat{OEA}\) = \(\widehat{ADC}\) (cùng bằng \(\widehat{OAE}\) )

mà 2 góc này nằm ở vị trí đồng vị của OE và BD→OE song song BD

b)Xét ΔACB nội tiếp (O) có đường kính AB

→ΔACB vuông tại C có cạnh huyền AB

Xét ΔAEB nội tiếp (O) có đường kính AB

→ΔAEB vuông tại E có cạnh huyền AB

Xét ΔADB có 2 đường cao Ac và BE cắt nhau tại I

→I là trực tâm→DI là đường cao trong ΔADB→DI \(\perp\) AB

15 tháng 11 2023

loading...  loading...  loading...  loading...  

NV
13 tháng 1

a.

Do \(\widehat{ACB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ACB}=90^0\)

\(\Rightarrow\widehat{ACD}=90^0\Rightarrow\Delta ACD\) vuông tại C

\(\Rightarrow\widehat{ADC}+\widehat{DAC}=90^0\) (1)

Lại có \(\widehat{DAC}=\widehat{DAx}\) (do AD là phân giác)

\(\widehat{BAE}+\widehat{DAx}=90^0\) (Ax là tiếp tuyến tại A)

\(\Rightarrow\widehat{BAE}+\widehat{DAC}=90^0\) (2)

(1);(2) \(\Rightarrow\widehat{ADC}=\widehat{BAE}\)

\(\Rightarrow\Delta ABD\) cân tại B

b.

\(\widehat{AEB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{AEB}=90^0\Rightarrow AE\perp BE\)

\(\Rightarrow BE\) là đường cao trong tam giác BAD

Mà tam giác BAD cân tại B \(\Rightarrow BE\) đồng thời là trung tuyến

\(\Rightarrow E\) là trung điểm AD

Lại có O là trung điểm AB

\(\Rightarrow OE\) là đường trung bình tam giác ABD

\(\Rightarrow OE||BD\)

NV
13 tháng 1

c.

Xét tam giác ABD có: \(AC\perp BD;BE\perp AD\)

\(\Rightarrow I\) là trực tâm tam giác ABD

\(\Rightarrow DI\) là đường cao thứ 3

\(\Rightarrow DI\perp AB\)

d.

Ta có: \(\widehat{BAC}+\widehat{CAx}=90^0\)

\(\Rightarrow\widehat{BAC}+2.\widehat{CAE}=90^0\)

\(\Rightarrow\widehat{CAE}=\dfrac{90^0-20^0}{2}=35^0\)

\(\Rightarrow\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=20^0+35^0=55^0\)

Xét tam giác vuông ABE có:

\(cos\widehat{BAE}=\dfrac{AE}{AB}\Rightarrow AE=AB.cos\widehat{BAE}=2.cos55^0\approx1,15\left(cm\right)\)

a) Xét (O) có 

\(\widehat{ACB}\) là góc nội tiếp chắn nửa đường tròn

nên \(\widehat{ACB}=90^0\)(Hệ quả góc nội tiếp)

hay \(\widehat{DCB}=90^0\)

Xét tứ giác DCBO có 

\(\widehat{DCB}\) và \(\widehat{DOB}\) là hai góc đối

\(\widehat{DCB}+\widehat{DOB}=180^0\left(90^0+90^0=180^0\right)\)

Do đó: DCBO là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).