Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
CM,CA là tiếp tuyến
DO đó: CM=CA và OC là phân giác của góc AOM
=>C nằm trên đường trung trực của MA(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của MA(2)
từ (1) và (2) suy ra CO là đường trung trực của MA
OC là phân giác của góc AOM
=>\(\widehat{AOM}=2\cdot\widehat{MOC}\)
Xét (O) có
DM,DB là tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
DM=DB
nên D nằm trên đường trung trực của BM(3)
OM=OB
=>O nằm trên đường trung trực của BM(4)
Từ (3) và (4) suy ra OD là là đường trung trực của BM
Ta có: OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\widehat{MOC}+2\cdot\widehat{MOD}=180^0\)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
Xét tứ giác OACM có
\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)
=>OACM là tứ giác nội tiếp
=>\(\widehat{OAM}=\widehat{OCM}\)
Xét ΔCOD vuông tại O và ΔAMB vuông tại M có
\(\widehat{OCD}=\widehat{MAB}\)(cmt)
Do đó: ΔCOD đồng dạng với ΔAMB
b: Xét ΔOCD vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
=>\(MC\cdot MD=R^2\) không đổi khi M di chuyển trên (O)
c: AB=2R
=>OA=OB=AB/2=R
Ta có: ΔCAO vuông tại A
=>\(CA^2+AO^2=CO^2\)
=>\(CA^2+R^2=\left(2R\right)^2\)
=>\(CA^2=3R^2\)
=>\(CA=R\sqrt{3}\)
\(MC\cdot MD=R^2\)
mà MC=AC và DM=DB
nên \(AC\cdot BD=R^2\)
=>\(BD\cdot R\sqrt{3}=R^2\)
=>\(BD=\dfrac{R}{\sqrt{3}}\)
a: Xét tứ giác HAOM có
\(\widehat{HAO}+\widehat{HMO}=90^0+90^0=180^0\)
=>HAOM là tứ giác nội tiếp
b: Xét (O) có
HA,HM là các tiếp tuyến
Do đó: HA=HM và OH là phân giác của góc MOA
Xét (O) có
KM,KB là các tiếp tuyến
Do đó: KM=KB và OK là phân giác của góc MOB
Ta có: HM+MK=HK(M nằm giữa H và K)
mà HM=HA và KM=KB
nên HA+KB=HK
c: Ta có: HA=HM
=>H nằm trên đường trung trực của AM(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra HO là đường trung trực của AM
=>HO\(\perp\)AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó; ΔAMB vuông tại M
=>AM\(\perp\)MB
Ta có: HO\(\perp\)AM
AM\(\perp\)MB
Do đó: HO//MB
=>\(\widehat{AOH}=\widehat{ABM}\)
Xét ΔAHO vuông tại A và ΔMAB vuông tại M có
\(\widehat{AOH}=\widehat{MBA}\)
Do đó: ΔAHO đồng dạng với ΔMAB
=>\(\dfrac{HO}{AB}=\dfrac{AO}{MB}\)
=>\(HO\cdot MB=AO\cdot AB=2R^2\)
Bài 2:
a: Xét (O) có
CM,CA là tiếp tuyến
nên OC là phân giác của góc MOA(1) và CM=CA
Xet (O) có
DM,DB là tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
b:
Xét ΔCOD vuông tại O có OM là đường cao
nên MC*MD=OM^2
c: \(AC=\sqrt{\left(2R\right)^2-R^2}=R\sqrt{3}\)
a: Xét tứ giác AHMO có \(\widehat{HAO}+\widehat{HMO}=180^0\)
nên AHMO là tứ giác nội tiếp
Xét (O) có
HM là tiếp tuyến
HA là tiếp tuyến
Do đó: HM=HA và OH là tia phân giác của góc MOA(1)
Xét (O) có
KM là tiếp tuyến
KB là tiếp tuyến
Do đó: KM=KB và OK là tia phân giác của góc MOB(2)
Ta có: HM+MK=HK
nên HK=HA+KB
b: Từ (1) và (2) suy ra \(\widehat{HOK}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)