Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\)
\(=n\left(n+9\right)\left(n+3\right)\left(n+6\right)+81\)
\(=\left(n^2+9n\right)\left(n^2+9n+18\right)+81\)
\(=\left(n^2+9n+9-9\right)\left(n^2+9n+9+9\right)+81\)
\(=\left(n^2+9n+9\right)^2-9^2+81\)
\(=\left(n^2+9n+9\right)^2\)
\(\Rightarrow n\left(n+3\right)\left(n+6\right)\left(n+9\right)+81\) là scp
Mk chỉ bt lm phần trên thôi nha :)
Xét thừa số (n+3) ta thấy: 3 là số tự nhiên lẻ (1)
Lại có trong thừa số (n+6): 6 là số tự nhiên chẵn(2)
Mà số tự nhiên chia hết cho 2 là số tự nhiên chẵn và trong 1 tích chỉ cần 1 thừa số là số chẵn => tích đó chẵn.(3)
Từ (1) (2) và (3): (n+3)x(n+6) luôn là số chẵn hay chia hết cho 2 với mọi n thuộc N
TH1 x>y
Ta có (xy+1)2=x^2.y^2+2xy+1>x2y2+x−y>x^2.y^2
Do đó loại vì x^2.y^2 làSCP.
TH2 x<y cm tương tự, loại.
Do đó x=y.
Ta có n(n+3)(n+6)(n+9)+81
=n(n+9)(n+3)(n+6)+81
=(n^2+9n)(n^2+9n+18)+81
=(n^2+9n+9−9)(n^2+9n+9+9)+81
=(n^2+9n+9)2−92+81
=(n^2+9n+9)^2
⇒n(n+3)(n+6)(n+9)+81 là scp (đpcm)