Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 2 thì \(\frac{1}{1}+\frac{1}{\sqrt{2}}>\sqrt{2}\)
Giả sử bất đẳng thức đúng đến n = k
=> \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{K}}>\sqrt{K}\)
Ta chứng minh bất đẳng thức đúng với n = k+1
Ta có \(\frac{1}{\sqrt{1}}+...+\frac{1}{\sqrt{K}}+\frac{1}{\sqrt{K+1}}>\sqrt{K}+\frac{1}{\sqrt{K+1}}\)
= \(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}\)
Mà ta lại có
\(\frac{1+\sqrt{K^2+K}}{\sqrt{K+1}}-\sqrt{K+1}\)
= \(\frac{\sqrt{K^2+K}-K}{\sqrt{K+1}}>0\)
Vậy bất đẳng thức đúng với n = k + 1
=> Điều phải chứng minh
Ta có \(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{n}};\frac{1}{\sqrt{3}}>\frac{1}{\sqrt{n}};...\)
\(\Rightarrow\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}>\frac{1}{\sqrt{n}}.n=\sqrt{n}\)
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n+1}}\ge2014\)
\(\Rightarrow\frac{1-\sqrt{2}}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}+\frac{\sqrt{2}-\sqrt{3}}{\left(\sqrt{2}+\sqrt{3}\right)\left(\sqrt{2}-\sqrt{3}\right)}+...+\frac{\sqrt{n}-\sqrt{n+1}}{\left(\sqrt{n}+\sqrt{n+1}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}\)
\(=\frac{1-\sqrt{2}}{1-2}+\frac{\sqrt{2}-\sqrt{3}}{2-3}+...+\frac{\sqrt{n}-\sqrt{n+1}}{n-\left(n+1\right)}\)
\(=\frac{1-\sqrt{2}+\sqrt{2}-\sqrt{3}+...+\sqrt{n}-\sqrt{n+1}}{-1}\)
\(=\frac{1-\sqrt{n+1}}{-1}=\sqrt{n+1}-1\ge2014\)
\(\Leftrightarrow\sqrt{n+1}\ge2015\)
\(\Leftrightarrow n+1=2015^2=4060225\)
\(V~~n=4060224\)