Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p nguyen to >3 => p khong chia het cho 3 => p co dang 3k+1 va 3k+2
TH1 : p=3k+1=> p2+2012 = (3k+1)2+2012=9.k2+6k+1+2012=9k2+6k+2013 chia hết cho 3 =>là hợp số
TH2 : BAN TU THƯ TRƯỜNG HỢP p=3k+2 nhé
CÒN KẾT QUẢ THÌ NÓ LÀ HỢP SỐ
ban dua p ve dang 3k+1 va 3k+2 roi tinh p^2+2012 va thay no deu chia het cho 3 .Tu do p^2+2013 la hop so
Vì:
Gọi n là số nguyên tố
+ Các số nguyên tố mũ 2 đều là hợp số vì nó chia hết cho n , chính nó , 2 ( vì là hợp số )và 1
+ MÀ các hợp số =2012 là số chẵn
=> Số đó chia hết cho 2 nữa
Vậy chúng ta kết luận Số đó là hợp số nhá
Vì P > 3
Đặt p = 3k + 1 ; p = 3k + 2
Khi p = 3k + 1 => p2 + 2012 = (3k + 1)2 + 2012 = 9k2 + 6k + 2013 = 3(3k2 + 2k + 671) \(⋮\)3 (1)
Khi p = 3k + 2 => p2 + 2012 = (3k + 2)2 + 2012 = 9k2 + 12k + 2016 = 3(3k2 + 4k + 672) \(⋮\)3 (2)
Từ (1) và (2) => Khi p \(\in P\); p > 3 thì p2 + 2012 hợp số
Vì N nguyên tố và N > 3 \(\Rightarrow n=3k+1;3k+2\)
Xét n = 3k+1
\(n^2=\left(3k+1\right)^2=9k^2+6k+1\)
\(n^2+2006=9k^2+6k+2007=3\left(3k^2+2k+669\right)\)là hợp số
Xét n = 3k+2
\(n^2=\left(3k+2\right)^2=9k^2+12k+4\)
\(n^2+2006=9k^2+12k+2010=3\left(3k^2+4k+670\right)\)là hợp số
Vì n là số nguyên tố lớn hơn 3 nên n\(⋮̸\)3\(\Rightarrow\)\(n^2\)\(⋮̸\)3.
Mặt khác n2 là số chính phương nên khi chia cho 3 chỉ có số dư là 0 hoặc 1
\(\Rightarrow\) n2 chia 3 dư 1\(\Rightarrow\)n2 có dạng 3k+1(k\(\in N\)* )
n2+2006=(3k+1)2+2006=9k2+3k+3k+1+2006=3(3k2+1+1)+2007=3(3k2+1+1+669)\(⋮\)3
mà n2+2006>3\(\Rightarrow\)n2+2006 là hợp số
Ta có: p là SNT > 3 => p k chia hết cho 3
=> p^2 chia 3 dư 1 => p^2 + 2012 chia hết cho 3 và p^2 + 2012 > 3 => p^2 + 2012 là hợp số.