Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
Vì 2n + 1 chia hết cho 2n - 1
=> (2n - 1) + 2 chia hết cho 2n - 1
Mà 2n - 1 chia hết cho 2n - 1
=> 2 chia hết cho 2n - 1
=> 2n - 1 thuộc Ư(2) = {-1;1-2;2}
Ta có :
2n - 1 | -2 | -1 | 1 | 2 |
2n | -1 | 0 | 2 | 3 |
n | -1/2(loại) | 0 (t/m) | 1 (t/m) | 3/2 (loại) |
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
Đặt A = \(\frac{1}{1.6}+\frac{1}{6.11}+..+\frac{1}{\left(5n+1\right)\left(5n+6\right)}\)
5A = \(\frac{5}{1.6}+\frac{5}{6.11}+..+\frac{5}{\left(5n+1\right)\left(5n+6\right)}\)
= \(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+..+\frac{1}{5n+1}-\frac{1}{5n+6}\)
= \(\frac{1}{1}-\frac{1}{5n+6}=\frac{5n+6-1}{5n+6}=\frac{5n+5}{5n+6}=\frac{5\left(n+1\right)}{5n+6}\)
=> A = \(=\frac{5\left(n+1\right)}{5n+6}:5=\frac{5\left(n+1\right)}{5n+6}\cdot\frac{1}{5}=\frac{n+1}{5n+6}\)
VẬy VT = VP ĐT Đ CM