Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
1002013+2 = 10000000...000+2
= 1000..0002(chia hết cho 3 vì tổng các chữ số chia hết cho 3)
Vậy 1002013+2 chia hết cho 3
Bài 2:
Nếu n+5 là số chẵn thì n + 6 là số lẻ
chẵn nhân lẻ luôn bằng chẵn
Nếu n +5 là số lẻ thì n+6 là số chẵn
lẻ nhân chẵn cũng bằng chẵn
Vậy (n+5).(n+6) là 1 số chẵn
M = \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\)
=> 5M = 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)
=> 5M - M = ( 1 + \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+...+\left(\frac{1}{5}\right)^{49}\)) - ( \(\frac{1}{5}+\left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^3+...+\left(\frac{1}{5}\right)^{^{^{ }}50}\))
4M = 1 - \(\left(\frac{1}{5}\right)^{50}\)
=> M = \(\frac{1-\left(\frac{1}{5}\right)^{50}}{4}\)< \(\frac{1}{4}\)
vì 5^n có tận cùng là 25 mà trừ 1 là 24 chia hết cho 4
c) vì 10^n=10....0(n số 0)
ta có 10...0 (n số 0) trừ 1 = 999...9(n số 9)chia hết cho 9
d)vì 10^n = 10....0(n số 0)
mà 10...0(n số 0) cộng 8 =10...8(n-1 chữ số 0) mà 1+8 =9 chia hết cho 9
a)xét n là số lẻ thì n^2 là lẻ cộng với n+1 là chẵn mà lẻ cộng chẵn = lẻ mà chia hết cho 4 là số chẵn
xét n là chẵn thì n^2 là chẵn nhưng n+1 là lẻ mà lẻ cộng chẵn = lẻ
\(16.4x=48\)
\(\Rightarrow4x=\frac{48}{16}\)
\(\Rightarrow4x=3\)
\(\Rightarrow x=\frac{3}{4}\)
\(\left|x-2\right|+1=5\)
\(\Rightarrow\left|x-2\right|=5-1\)
\(\Rightarrow\left|x-2\right|=4\)
\(\Rightarrow\orbr{\begin{cases}x-2=-4\\x-2=4\end{cases}}\)
\(\text{* Trường hợp : }x-2=-4\)
\(\Rightarrow x=-4+2\)
\(\Rightarrow x=-2\)
\(\text{* Trường hợp : }x-2=4\)
\(\Rightarrow x=4+2\)
\(\Rightarrow x=6\)
\(\text{Vậy }x\in\left\{-2;6\right\}\)
a) Gọi ƯCLN của 2n + 1 và 6n + 5 là d.
=> 2n + 1 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 3 chia hết cho d và 6n + 5 chia hết cho d
=> 6n + 5 - (6n + 3) chia hết cho d
=> 2 chia hết cho d.
Mà 2n + 1 là số lẻ không chia hết cho d => d = 1
=> 2n + 1 và 6n + 5 là một cặp số nguyên tố.
b) Gọi ƯCLN của 3n + 2 và 5n + 3 là d
=> 15n + 10 chia hết cho d và 15n + 9 chia hết cho d
=> 15n + 10 - (15n + 9) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy 3n + 2 và 5n + 3 là một cặp số nguyên tố (đpcm)
Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2
Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3
Vậy n.(n+1).(n+5) chia hết cho 3
=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )
=> ĐPCM
k mk nha
vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2
+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2
- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )
khi đó n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )
khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 3
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3
mà ƯCLN( 2 ; 3 ) = 1
=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3
=> n ( n + 1 ) ( n + 2 ) chia hết cho 6
chúc bạn học tốt
^^
a) có 2n -4 chia hết cho n-1
=> (2n -2 ) -2 chia hết cho n -1
=> 2(n-1) -2 chia hết cho n-1
ta thấy 2(n-1) chia hết cho n-1
=> 2 chia hết cho n-1
=> n-1 \(\in\)Ư(2 ) = { 1: 2;-1;-2}
=> n \(\in\){ 2, 3;0;-1}
mà n \(\in\) N
=> n\(\in\) {2;3;0}
b) có 27 - 5n chia hết cho n+3
=> ( -5n -15) + 42 chia hết cho n+3
=> -5( n+3 ) +42 chia hết cho n+3
ta thấy -5 ( n+3 ) chia hết cho n+3
=> 42 chia hết cho n+3
=> n+3 \(\in\)Ư(42)={1;2;3;6;7;14;21;42}
=> n\(\in\) { -2 ; -1;1;3;4;11;18;39}
mà n \(\in\) N
=> n \(\in\) {1;3;4;11;18;39}