Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^{n+1}+16.7^n+6^{2n+1}⋮29\)(1)
Ta có: \(7^{n+1}+16.7^n+6^{2n+1}\)
\(=6.6^{2n}-6.7^n+29.7^n\)
\(=6\left(36^n-7^n\right)+29.7^n⋮29\)
Vì \(36^n-7^n⋮\left(36-7\right)\)
Vậy (1) đúng với mọi số tự nhiên n.
\(A=n^2\left(n^4-n^2+2n+2\right)=n^2\left(n^2+2n+1\right)\left(n^2-2n+2\right)\)
\(A=n^2.\left(n+1\right)^2.\left[\left(n-1\right)^2+1\right]\) có \(\left(n-1\right)^2+1\) chỉ là số CP phương khi n=1
Vậy với n>1 A không thể Cp
Ta có: A=n(n+1)(2n+1)
\(=n\left(n+1\right)\left(2n+2-1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+n\left(n+1\right)\left(n-1\right)\)
Vì n;n+1;n+2 là ba số nguyên liên tiếp nên \(n\left(n+1\right)\left(n+2\right)⋮3!\)
hay \(n\left(n+1\right)\left(n+2\right)⋮6\)
Vì n-1;n;n+1 là ba số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3!\)
hay \(\left(n-1\right)n\left(n+1\right)⋮6\)
\(\Leftrightarrow A⋮6\)
Ta có: 2n+1 là số chính phương lẻ (do n tự nhiên)
nên 2n+1 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+1 lẻ
Mà n+1 là số chính phương
=> n+1 chia 8 dư 1
=> n chia hết cho 8 (1)
Giả sử n không chia hết cho 3
Vì n+1 là số chính phương nên chia 3 dư 1 hoặc chia hết cho 3
=> n chia hết cho 3 hoặc chia 3 dư 2
Mà n không chia hết cho 3
=> n chia 3 dư 2
=> 2n+1 chia 3 dư 2 (vô lý vì số chính phương chia 3 dư 0 hoặc 1)
=> giả sử sai
=> n chia hết cho 3 (2)
Mặt khác : BCNN (8,3)=24 (3)
Từ (1)(2)(3) => n chia hết cho 24
$2n+1$ là số chính phương nên $2n+1 \equiv 0;1(mod3)$
Với $2n+1 \equiv 0 (mod 3)$ mà $n \equiv 0;2 (mod 3)$ do $n+1$ là scp nên ta loại
Với $2n+1 \equiv 1 (mod 3)$ hay $2n \equiv 0(mod3)$
Hay $n \equiv 3$
$2n+1 \equiv 1 (mod 8)$ nên $2n \equiv 0 (mod 8)$
suy ra $n \vdots 4$
$n+1 \equiv 1 (mod8)$
Nên $n \vdots 8$
$n \vdots 3$
$(8;3)=1$ nên $n \vdots 24$ hay $n$ là bội của 24
Lời giải:
$n$ không chia hết cho $3$ nên $n=3k+1$ hoặc $n=3k+2$ với $k$ tự nhiên.
Nếu $n=3k+1$:
$A=5^{2n}+5^n+1=5^{2(3k+1)}+5^{3k+1}+1$
$=5^{6k}.25+5.5^{3k}+1$
Vì $5^3\equiv 1\pmod {31}$
$\Rightarrow A\equiv 1^{2k}.25+5.1^k+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Nếu $n=3k+2$ thì:
$A=5^{2(3k+2)}+5^{3k+2}+1$
$=5^{6k}.5^4+5^{3k}.5^2+1$
$\equiv 1^{2k}.1.5+1^k.5^2+1\equiv 5+5^2+1\equiv 31\equiv 0\pmod {31}$
$\Rightarrow A\vdots 31$
Từ 2 TH suy ra $A\vdots 31$ (đpcm)
Trong 2 số n và 7n + 1 luôn có một số và chỉ một số là số chẵn \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮2\)
Số tự nhiên n có một trong 3 dạng: 3k, 3k + 1, 3k + 2
+ Nếu n = 3k thì \(n\left(2n+7\right)\left(7n+1\right)⋮3\)
+ Nếu n = 3k + 1 thì 2n + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)
+ Nếu n = 3k + 2 thì 7n + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮3\)
Vì \(n\left(2n+7\right)\left(7n+1\right)⋮2;3\) nên \(n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
b,
Tam giác MNC vuông tại C có K là trung điểm của MN nên
KC=KM=KN
ta có: OK đi qua trung điểm của dây MN nên OK là trung trực của MN
KO2=OM2-KM2=OM2-KC2
=> KO2+KC2=OM2-KC2+KC2=OM2=AB2/4 không đổi
? bro