Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{28}\) ≤ \(\dfrac{x}{56}\) ≤ \(\dfrac{1}{4}\)
\(\dfrac{6}{56}\) ≤ \(\dfrac{x}{56}\) ≤ \(\dfrac{14}{56}\)
6 ≤ \(x\) ≤ 14
Vì \(x\) nguyên nên \(x\) \(\in\) {6; 7; 8; 9; 10; 11; 12; 13; 14}
Vậy \(x\) \(\in\) {6; 7; 8; 9; 10; 11; 12; 13; 14}
\(\frac{28}{15}\times\frac{1}{4}\times3+\left(\frac{8}{15}-\frac{79}{60}\right)\times\frac{24}{47}\)
=\(\frac{7}{15}\times3+\left(\frac{32}{60}-\frac{79}{60}\right)\times\frac{24}{47}\)
=\(\frac{7}{5}+\frac{47}{60}\times\frac{24}{47}\)
=\(\frac{7}{5}+\frac{2}{5}\)
=\(\frac{5}{5}\)
=\(1\)
\(\frac{28}{15}\)x\(\frac{1}{4}\)x3+(\(\frac{8}{15}\)+\(\frac{-79}{60}\))x\(\frac{24}{47}\)=
=\(\frac{28}{15}\)x\(\frac{1}{4}\)x3+(\(\frac{32}{60}\)+\(\frac{-79}{60}\))x\(\frac{24}{47}\)
=\(\frac{28}{15}\)x\(\frac{1}{4}\)x3+\(\frac{-47}{60}\)x\(\frac{24}{47}\)
=\(\frac{7}{15}\)x3+\(\frac{-47}{60}\)x\(\frac{24}{47}\)
=\(\frac{7}{5}\)+\(\frac{-2}{5}\)
=\(\frac{5}{5}\)=1
a) Đặt A= \(\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{36}\)
\(\dfrac{1}{2}\)A=\(\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{72}\)
\(\dfrac{1}{2}\)A=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)
\(\dfrac{1}{2}\)A=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
\(\dfrac{1}{2}\)A=\(\dfrac{1}{2}-\dfrac{1}{9}\)
\(\dfrac{1}{2}\)A=\(\dfrac{7}{18}\)
A=\(\dfrac{7}{9}\)
\(F=\frac{1}{18}+\frac{1}{54}+\frac{1}{108}+...+\frac{1}{990}\)
\(F=\frac{1}{9}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{110}\right)\)
\(F=\frac{1}{9}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{10}-\frac{1}{11}\right)\)
\(F=\frac{1}{9}\left(1-\frac{1}{11}\right)\)
\(F=\frac{1}{9}.\frac{10}{11}=\frac{10}{99}\)
n-2 chia het cho n+3
nen n+3-5 chia het cho n+3
5 chia het cho n+3
n+3 =cong tru1 cong tru 5
roi tim n
N = 1319/4158