K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Gọi S là diện tích của tam giác ABC.

Hình vuông có cạnh AB được chia thành hai tam giác vuông cân bằng △ ABC nên diện tích hình vuông cạnh AB bằng 2S.

Hình vuông có cạnh AC được chia thành hai tam giác vuông cân bằng  △ ABC nên diện tích hình vuông cạnh AC bằng 2S.

Hình vuông cạnh BC được chia thành bốn hình tam giác vuông cân bằng  △ ABC nên có diện tích bằng 4S.

Vì 4S = 2S + 2S nên diện tích hình vuông dựng trên cạnh huyền bằng tổng diện tích hai hình vuông dựng trên hai cạnh góc vuông.

6 tháng 1 2016

Giả sử tam giác vuông ABC có cạnh huyền là a và hai cạnh góc vuông là b, c (hình a).

Diện tích hình vuông dựng trên cạnh huyền a là a2

Diện tích các hình vuông dựng trên hai cạnh góc vuông b, c lần lượt là b2 + c2

Theo định lí Pitago, tam giác vuông ABC có:  a = b2 + c2

Vậy: Trong một tam giác vuông, tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích hình vuông dựng trên cạnh huyền.

Chú ý: Ta có một cách chứng minh khác đinh lyd Pitago bằng diện tích. Trên hình b, hai hình vuông ABDE và GHIK cùng có cạnh bằng b + c.

Do đó 

SABDE = (b+c)2= Sb+ Sc+ 4.     (1)

SGHIK= (b+c)= S+ 4.           (2)

Từ (1) và (2) suy ra

Sb+ S= S

tick đúng nha

 

6 tháng 1 2016

bằng nhau.

chắc chắn 100%

7 tháng 1 2016

a2 + b2 = c2

7 tháng 1 2016

2 cạnh góc vuông tam giác đó là a;b
=> cạnh huyền là a2+b2
tổng diện tích 2 hình vuông dựng trên 2 cạnh góc vuông là a2+b2
diện tích h.vuông dựng trên cạnh huyền là (a2+b2)2


 

23 tháng 6 2019

Giải bài 10 trang 119 Toán 8 Tập 1 | Giải bài tập Toán 8

Giả sử tam giác vuông ABC có cạnh huyền là a và hai cạnh góc vuông là b, c.

Diện tích hình vuông dựng trên cạnh huyền a là a2

Diện tích các hình vuông dựng trên hai cạnh góc vuông b, c lần lượt là b2, c2.

Tổng diện tích hai hình vuông dựng trên hai cạnh góc vuông b, c là b2 + c2.

Theo định lí Pitago, tam giác ABC có: a2 = b2 + c2

Vậy: Trong một tam giác vuông, tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích vuông dựng trên cạnh huyền.

20 tháng 11 2015

Tổng diện tích hai hình vuông dựng trên hai cạnh góc vuông b và c là : b² + c²

Diện tích hình vuông dựng trên cạnh huyền là : a².

Theo định lý Pytago có a² = b² + c².

Vậy tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích hình vuông dựng trên cạnh huyền.
 

29 tháng 1 2019

Câu hỏi này thực sự ko nghiêm túc, ko cần thiết nên thực sự ko nên trả lời, mong lần sau bn đăng bài quan trọng hơn, ko đăng câu hỏi linh tinh như thế này!

29 tháng 1 2019

Phạm Sỹ Minh không biết làm thì bớt xạo lz + câm mồm lại nha bạn!Không hay đâu.Câu hỏi này là câu hỏi được trích từ những bài toán nâng cao nhé!Không biết thì đừng xạo lz,ra vẻ ta đây hơn người !

21 tháng 4 2017

Giả sử tam giác vuông ABC có cạnh huyền là a và hai cạnh góc vuông là b, c (hình a).

Diện tích hình vuông dựng trên cạnh huyền a là a2

Diện tích các hình vuông dựng trên hai cạnh góc vuông b, c lần lượt là b2 + c2

Theo định lí Pitago, tam giác vuông ABC có: a2 = b2 + c2

Vậy: Trong một tam giác vuông, tổng diện tích của hai hình vuông dựng trên hai cạnh góc vuông bằng diện tích hình vuông dựng trên cạnh huyền.

Chú ý: Ta có một cách chứng minh khác đinh lyd Pitago bằng diện tích. Trên hình b, hai hình vuông ABDE và GHIK cùng có cạnh bằng b + c.

Do đó

SABDE = (b+c)2= Sb+ Sc+ 4. (1)

SGHIK= (b+c)2 = Sa + 4. (2)

Từ (1) và (2) suy ra

Sb+ Sc = Sa

20 tháng 7 2017

dễ thế mà không làm được à

20 tháng 7 2017

hì! giúp mình với