K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Gọi d thuộc Ư C ( 2n + 1 ; 2n + 3 ) 

=> \(\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)=> ( 2n + 3 ) - ( 2n + 1 ) \(⋮\)d => 2 \(⋮\)d => d thuộc Ư ( 2 ) = { \(\pm1;\pm2\)}

mà 2n + 1 và 2n + 3 là số lẻ => d khác cộng trừ 2 => d = \(\pm\)1

Vậy phân số trên tối giản

1 tháng 3 2018

Gọi d = ƯCLN ( 2n + 1 ; 2n + 3 )

Ta có : 2n + 1 chia hết cho d

           2n + 3 chia hết cho d

=> ( 2n + 3 - 2n - 1 ) chia hết cho d

=> 2 chia hết cho d            => d thuộc { 1 ; - 1 ; 2 ; - 2 }

mà 2n + 1 ; 2n + 3 lẻ => d lẻ => d thuộc { 1 ; - 1 }

=> 2n + 1 ; 2n + 3 là hai số nguyên tố cùng nhau

=> phân số \(\frac{2n+1}{2n+3}\) là phân số tối giản

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

12 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{2n-2}{2n+4}=\frac{2n+4-6}{2n+4}=\frac{2n+4}{2n+4}-\frac{6}{2n+4}=1-\frac{6}{2n+4}\)

Để A là số nguyên thì \(\frac{6}{2n+4}\) phải là số nguyên hay nói cách khác \(6⋮\left(2n+4\right)\)

\(\Rightarrow\)\(\left(2n+4\right)\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Suy ra : 

\(2n+4\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(n\)\(\frac{-3}{2}\)\(\frac{-5}{2}\)\(-1\)\(-3\)\(\frac{-1}{2}\)\(\frac{-7}{2}\)\(1\)\(-5\)

Mà \(n\inℤ\) nên \(n\in\left\{-5;-3;-1;1\right\}\)

Vậy \(n\in\left\{-5;-3;-1;1\right\}\)

Chúc bạn học tốt ~

12 tháng 3 2018

b)Gọi d = ƯCLN(a, a+b) (d thuộc N*)
=> a chia hết cho d; a + b chia hết cho d
=> a chia hết cho d; b chia hết cho d
Mà phân số a/b tối giản => d = 1
=> ƯCLN(a, a+b) = 1
=> phân số a/a+b tối giản

12 tháng 5 2021

Câu 1:

gọi n-1/n-2 là M.

Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1

Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)

Gọi d = ƯCLN (n - 1; n - 2) 

=> n - 1 - (n - 2) ⋮⋮d       *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1

=> 1 ⋮⋮d

=> d ∈∈Ư (1)

Ư (1) = {1}

=> d = 1

Mà ngay từ lúc đầu d phải bằng 1 rồi.

Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.

22 tháng 1 2020

a) Ta có:\(\frac{2n+1}{2n+3}\)là phân số tối giản

Mà: 2n chia hết cho 2n

       1 không chia hết cho 3

=>\(\frac{2n+1}{2n+3}\)là phân số tối giàn  (phân số tối giản là phân số có tử và mẫu là hai số nguyên tố cùng nhau ko có ước chung)

7 tháng 3 2023

a) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

17 tháng 7 2023

) Gọi ƯCLN(n+1, 2n+3) = d (d ∈ N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d

    2n+3 ⋮ d

=> (2n+3)-(2n+2) ⋮ d => 1⋮ d

Mà d ∈ N* => d =1

=> ƯCLN(n+1, 2n+3) = 1

Vậy phân số n+1/2n+3 là phân số tối giản (đpcm)

b)Gọi ƯCLN(2n+3, 4n+8) = d (d ∈ N*)

=> 2n+3 ⋮ d => 2(2n+3) ⋮ d => 4n+6 ⋮ d

    4n+8 ⋮ d

=> (4n+8)-(4n+6) ⋮ d => 2⋮ d

Mà d ∈ N* => d =1; 2

Vì 2n ⋮ 2, 3 không ⋮ 2 => 2n+3 không ⋮ 2

=> d ≠ 2 => d = 1

=> ƯCLN(2n+3, 4n+8)=1

Vậy phấn số 2n+3/4n+8 là phân số tối giản (đpcm) 

 Đúng(0)   Cao yến Chi Cao yến Chi14 tháng 4 2020 lúc 12:42  

bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản

A=2n+1/2n+2

B=2n+3/3n+5

Bài 2: 

a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản

b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản

giúp mk với 

mk sẽ tick cho!!

28 tháng 3 2020

Gọi (2n+1,2n+3) là d. ĐK  : \(d\inℕ^∗\)

Ta có : (2n+1,2n+3)=d

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\2n+3⋮d\end{cases}}\)

\(\Rightarrow\)(2n+3)-(2n+1)\(⋮\)d

\(\Rightarrow\)2\(⋮\)d

\(\Rightarrow d\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

Mà 2n+1 là số nguyên lẻ nên \(d=\pm1\)

\(\Rightarrow\left(2n+1,2n+3\right)=\pm1\)

\(\Rightarrow\)2n+1 và 2n+3 là 2 số nguyên tố cùng nhau

\(\Rightarrow\)Phân số \(A=\frac{2n+1}{2n+3}\)tối giản với mọi số tự nhiên n  (đpcm)

24 tháng 3 2020

Câu hỏi của ☪Ņĥøķ Ņģøç☪ - Toán lớp 6 - Học toán với OnlineMath

17 tháng 7 2023

a) \(\dfrac{n}{n+1}\) là phân số tối giản khi : \(n;n+1⋮1\)

\(\Rightarrow n-\left(n+1\right)⋮1\)

\(\Rightarrow n-n-1⋮1\Rightarrow-1⋮1\) (luôn đúng)

\(\Rightarrow\dfrac{n}{n+1}\) là phân số tối giản

b) \(\dfrac{2n+1}{2n+3}\) là phân số tối giản khi \(2n+1;2n+3⋮1\)

\(\Rightarrow2n+1-\left(2n+3\right)⋮1\)

\(\Rightarrow2n+1-2n-3⋮1\)

\(\Rightarrow-2⋮1\) (luôn đúng)

\(\Rightarrow\dfrac{2n+1}{2n+3}\) là phân số tối giản

18 tháng 7 2023

a) ��+1 là phân số tối giản khi : �;�+1⋮1

⇒�−(�+1)⋮1

⇒�−�−1⋮1⇒−1⋮1 (luôn đúng)

⇒��+1 là phân số tối giản

b) 2�+12�+3 là phân số tối giản khi 2�+1;2�+3⋮1

⇒2�+1−(2�+3)⋮1

⇒2�+1−2�−3⋮1

⇒−2⋮1 (luôn đúng)

⇒2�+12�+3 là phân số tối giản

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha