Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xy - 5y = 13
y . ( x - 5 ) = 13
Lập bảng ta có :
x-5 | 13 | 1 | -13 | -1 |
x | 18 | 6 | -8 | 4 |
y | 1 | 13 | -1 | -13 |
Vậy ( x ; y ) = ( 18 ; 1 ) = ( 6 ; 13 ) = ( -8 ; -1 ) = ( 4 ; -13 )
# Chúc bạn học tốt ^^!
a) xy - 5y = 13
y . ( x - 5 ) = 13
Lập bảng ta có :
x-5 | 13 | 1 | -13 | -1 |
x | 18 | 6 | -8 | 4 |
y | 1 | 13 | -1 | -13 |
Vậy ( x ; y ) = ( 18 ; 1 ) = ( 6 ; 13 ) = ( -8 ; -1 ) = ( 4 ; -13 )
Tham khảo:Câu hỏi của Kiều Thị Huyền - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Thinhdc6a5 - Toán lớp 6 - Học toán với OnlineMath
a) \(xy+x+2y=5\\ \Rightarrow y\left(x+2\right)+x+2=5+2\\ \Rightarrow\left(x+2\right)\left(y+1\right)=7\)
Ta xét bảng:
x+2 | 1 | 7 | -1 | -7 |
x | -1 | 5 | -3 | -9 |
y+1 | 7 | 1 | -7 | -1 |
y | 6 | 0 | -8 | -2 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;6\right);\left(5;0\right);\left(-3;-8\right);\left(-9;-2\right)\right\}\)
b) \(xy-3x-y=0\\ \Rightarrow x\left(y-3\right)-y+3=3\\ \Rightarrow\left(y-3\right)\left(x-1\right)=3\)
Ta xét bảng:
x-1 | 1 | 3 | -1 | -3 |
x | 2 | 4 | 0 | -2 |
y-3 | 3 | 1 | -3 | -1 |
y | 6 | 4 | 0 | 2 |
Vậy \(\left(x;y\right)\in\left\{\left(2;6\right);\left(4;4\right);\left(0;0\right);\left(-2;2\right)\right\}\)
c) \(xy+2x+2y=-16\\ \Rightarrow x\left(y+2\right)+2y+4=-12\\ \Rightarrow\left(y+2\right)\left(x+2\right)=-12\)
Ta xét bảng:
x+2 | 1 | 2 | 3 | 4 | 6 | 12 | -1 | -2 | -3 | -4 | -6 | -12 |
x | -1 | 0 | 1 | 2 | 4 | 10 | -3 | -4 | -5 | -6 | -8 | -14 |
y+2 | -12 | -6 | -4 | -3 | -2 | -1 | 12 | 6 | 4 | 3 | 2 | 1 |
y | -14 | -8 | -6 | -5 | -4 | -3 | 10 | 4 | 2 | 1 | 0 | -1 |
Vậy \(\left(x;y\right)\in\left\{\left(-1;-14\right);\left(0;-8\right);\left(1;-6\right);\left(2;-5\right);\left(4;-4\right);\left(10;-3\right);\left(-3;10\right);\left(-4;4\right);\left(-5;2\right);\left(-6;1\right);\left(-8;0\right);\left(-14;-1\right)\right\}\)
a: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2x-y=4\\3x+2y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-2y=8\\3x+2y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}7x=7\\2x-y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
b: Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3x-2y=5\\2x+5y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}15x-10y=25\\4x+10y=-6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}19x=19\\3x-2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\2y=3x-5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
d: Đặt x/2=y/5=k
=>x=2k; y=5k
Ta có: xy=90
nên \(10k^2=90\)
\(\Leftrightarrow k^2=9\)
Trường hợp 1: k=3
=>x=6; y=15
Trường hợp 2: k=-3
=>x=-6; y=-15
a, \(x,y\in Z\Rightarrow\left\{{}\begin{matrix}x-3,2y-6\in Z\\x-3,2y-6\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\end{matrix}\right.\)
Ta có bảng:
x-3 | -1 | -5 | 1 | 5 |
2y-6 | -5 | -1 | 5 | 1 |
x | 2 | -2 | 4 | 8 |
y | \(\dfrac{1}{2}\left(loại\right)\) | \(\dfrac{5}{2}\left(loại\right)\) | \(\dfrac{11}{2}\left(loại\right)\) | \(\dfrac{7}{2}\left(loại\right)\) |
Vậy không có x,y thỏa mãn đề bài
b, tương tự câu a
\(c,xy-5x+2y=7\\ \Rightarrow x\left(y-5\right)+2y-10=-3\\ \Rightarrow x\left(y-5\right)+2\left(y-5\right)=-3\\ \Rightarrow\left(x+2\right)\left(y-5\right)=-3\)
Rồi làm tương tự câu a
\(d,xy-3x-4y=5\\ \Rightarrow x\left(y-3\right)-4y+12=17\\ \Rightarrow x\left(y-3\right)-4\left(y-3\right)=17\\ \Rightarrow\left(x-4\right)\left(y-3\right)=17\)
Rồi làm tương tự câu a